These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 27832650)

  • 61. ORIGIN OF THE PRONEPHRIC DUCT IN XENOPUS LAEVIS.
    FOX H; HAMILTON L
    Arch Biol (Liege); 1964; 75():245-51. PubMed ID: 14202165
    [No Abstract]   [Full Text] [Related]  

  • 62. Combined transcriptomics and proteomics unveil the impact of vitamin C in modulating specific protein abundance in the mouse liver.
    Aumailley L; Bodein A; Adjibade P; Leclercq M; Bourassa S; Droit A; Mazroui R; Lebel M
    Biol Res; 2024 May; 57(1):26. PubMed ID: 38735981
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Vitamin C modulates the levels of several proteins of the mitochondrial complex III and its activity in the mouse liver.
    Aumailley L; Bourassa S; Gotti C; Droit A; Lebel M
    Redox Biol; 2022 Nov; 57():102491. PubMed ID: 36179436
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dynamin Binding Protein Is Required for
    DeLay BD; Baldwin TA; Miller RK
    Front Physiol; 2019; 10():143. PubMed ID: 30863317
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Transgenic Xenopus laevis Line for In Vivo Labeling of Nephrons within the Kidney.
    Corkins ME; Hanania HL; Krneta-Stankic V; DeLay BD; Pearl EJ; Lee M; Ji H; Davidson AJ; Horb ME; Miller RK
    Genes (Basel); 2018 Apr; 9(4):. PubMed ID: 29642376
    [No Abstract]   [Full Text] [Related]  

  • 66. Gulonolactone Addition to Human Hepatocellular Carcinoma Cells with Gene Transfer of Gulonolactone Oxidase Restores Ascorbate Biosynthesis and Reduces Hypoxia Inducible Factor 1.
    Flett T; Campbell EJ; Phillips E; Vissers MCM; Dachs GU
    Biomedicines; 2014 Mar; 2(1):98-109. PubMed ID: 28548062
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evaluation of gene expression profiling in a mouse model of L-gulonolactone oxidase gene deficiency.
    Yan J; Jiao Y; Li X; Jiao F; Beamer WG; Rosen CJ; Gu W
    Genet Mol Biol; 2007; 30(2):322-329. PubMed ID: 18167513
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An immunofluorescence method to analyze the proliferation status of individual nephron segments in the Xenopus pronephric kidney.
    Romaker D; Zhang B; Wessely O
    Methods Mol Biol; 2012; 886():121-32. PubMed ID: 22639256
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Anxa4 Genes are Expressed in Distinct Organ Systems in Xenopus laevis and tropicalis But are Functionally Conserved.
    Massé KL; Collins RJ; Bhamra S; Seville RA; Jones EA
    Organogenesis; 2007 Oct; 3(2):83-92. PubMed ID: 19279706
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A beautiful, complex simplicity: the origins of nephron segmentation uncovered by single-cell sequencing of the pronephros.
    Vize PD
    Kidney Int; 2023 Jan; 103(1):23-25. PubMed ID: 36603975
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Vitamin C Differentially Impacts the Serum Proteome Profile in Female and Male Mice.
    Aumailley L; Bourassa S; Gotti C; Droit A; Lebel M
    J Proteome Res; 2021 Nov; 20(11):5036-5053. PubMed ID: 34643398
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The analysis of vitamin C concentration in organs of gulo(-/-) mice upon vitamin C withdrawal.
    Kim H; Bae S; Yu Y; Kim Y; Kim HR; Hwang YI; Kang JS; Lee WJ
    Immune Netw; 2012 Feb; 12(1):18-26. PubMed ID: 22536166
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Differential gene expression between wild-type and Gulo-deficient mice supplied with vitamin C.
    Jiao Y; Zhang J; Yan J; Stuart J; Gibson G; Lu L; Willaims R; Wang YJ; Gu W
    Genet Mol Biol; 2011 Jul; 34(3):386-95. PubMed ID: 21931508
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ascorbic acid insufficiency induces the severe defect on bone formation via the down-regulation of osteocalcin production.
    Kim W; Bae S; Kim H; Kim Y; Choi J; Lim SY; Lee HJ; Lee J; Choi J; Jang M; Lee KE; Chung SG; Hwang YI; Kang JS; Lee WJ
    Anat Cell Biol; 2013 Dec; 46(4):254-61. PubMed ID: 24386598
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The amphibian pronephros.
    FOX H
    Q Rev Biol; 1963 Mar; 38():1-25. PubMed ID: 13959024
    [No Abstract]   [Full Text] [Related]  

  • 76. Dietary Vitamin C and Age-Induced Lipid and Hormonal Metabolic Changes in a Humanized Mouse Model Not Synthesizing Vitamin C and Producing Lipoprotein(a) [Gulo (-/-); Lp(a)+].
    Shi L; Rath M; Niedzwiecki A
    J Nutr Metab; 2021; 2021():5591697. PubMed ID: 34221500
    [TBL] [Abstract][Full Text] [Related]  

  • 77. On the Effect of Removal of the Pronephros of the Amphibian Embryo.
    Howland RB
    Proc Natl Acad Sci U S A; 1916 Apr; 2(4):231-4. PubMed ID: 16586615
    [No Abstract]   [Full Text] [Related]  

  • 78. Gulo Acts as a de novo Marker for Pronephric Tubules in Xenopus laevis.
    Xie Y; Liu Y; Zhao Y; Wang H; Liu Y; Wang H; Li M; Zhao H; Zhou Q; Lv X
    Kidney Blood Press Res; 2016; 41(6):794-801. PubMed ID: 27832650
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Annexin IV (Xanx-4) has a functional role in the formation of pronephric tubules.
    Seville RA; Nijjar S; Barnett MW; Massé K; Jones EA
    Development; 2002 Apr; 129(7):1693-704. PubMed ID: 11923205
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A role for Xlim-1 in pronephros development in Xenopus laevis.
    Chan TC; Takahashi S; Asashima M
    Dev Biol; 2000 Dec; 228(2):256-69. PubMed ID: 11112328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.