BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 27832823)

  • 21. What Happens to Nutrition Intake in the Post-Intensive Care Unit Hospitalization Period? An Observational Cohort Study in Critically Ill Adults.
    Ridley EJ; Parke RL; Davies AR; Bailey M; Hodgson C; Deane AM; McGuinness S; Cooper DJ
    JPEN J Parenter Enteral Nutr; 2019 Jan; 43(1):88-95. PubMed ID: 29924393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clinical Outcomes Related to Protein Delivery in a Critically Ill Population: A Multicenter, Multinational Observation Study.
    Nicolo M; Heyland DK; Chittams J; Sammarco T; Compher C
    JPEN J Parenter Enteral Nutr; 2016 Jan; 40(1):45-51. PubMed ID: 25900319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enteral nutrition delivery and energy expenditure in medical intensive care patients.
    Petros S; Engelmann L
    Clin Nutr; 2006 Feb; 25(1):51-9. PubMed ID: 16216393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients.
    Weijs PJ; Looijaard WG; Beishuizen A; Girbes AR; Oudemans-van Straaten HM
    Crit Care; 2014 Dec; 18(6):701. PubMed ID: 25499096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy imbalance and the risk of overfeeding in critically ill children.
    Mehta NM; Bechard LJ; Dolan M; Ariagno K; Jiang H; Duggan C
    Pediatr Crit Care Med; 2011 Jul; 12(4):398-405. PubMed ID: 20975614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: The PROTINVENT retrospective study.
    Koekkoek WACK; van Setten CHC; Olthof LE; Kars JCNH; van Zanten ARH
    Clin Nutr; 2019 Apr; 38(2):883-890. PubMed ID: 29486907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Best practices for determining resting energy expenditure in critically ill adults.
    Schlein KM; Coulter SP
    Nutr Clin Pract; 2014 Feb; 29(1):44-55. PubMed ID: 24336442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of indirect calorimetry, the Fick method, and prediction equations in estimating the energy requirements of critically ill patients.
    Flancbaum L; Choban PS; Sambucco S; Verducci J; Burge JC
    Am J Clin Nutr; 1999 Mar; 69(3):461-6. PubMed ID: 10075331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation Study of Energy Requirements in Critically Ill, Obese Cancer Patients.
    Tajchman SK; Tucker AM; Cardenas-Turanzas M; Nates JL
    JPEN J Parenter Enteral Nutr; 2016 Aug; 40(6):806-13. PubMed ID: 25754439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypocaloric vs Normocaloric Nutrition in Critically Ill Patients: A Prospective Randomized Pilot Trial.
    Petros S; Horbach M; Seidel F; Weidhase L
    JPEN J Parenter Enteral Nutr; 2016 Feb; 40(2):242-9. PubMed ID: 24699555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preventing Underfeeding and Overfeeding: A Clinician's Guide to the Acquisition and Implementation of Indirect Calorimetry.
    Ladd AK; Skillman HE; Haemer MA; Mourani PM
    Nutr Clin Pract; 2018 Apr; 33(2):198-205. PubMed ID: 28549221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Weight-adjusted resting energy expenditure is not constant in critically ill patients.
    Zauner A; Schneeweiss B; Kneidinger N; Lindner G; Zauner C
    Intensive Care Med; 2006 Mar; 32(3):428-34. PubMed ID: 16477414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein-energy nutrition in the ICU is the power couple: A hypothesis forming analysis.
    Oshima T; Deutz NE; Doig G; Wischmeyer PE; Pichard C
    Clin Nutr; 2016 Aug; 35(4):968-74. PubMed ID: 26608526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy expenditure in the critically ill performing early physical therapy.
    Hickmann CE; Roeseler J; Castanares-Zapatero D; Herrera EI; Mongodin A; Laterre PF
    Intensive Care Med; 2014 Apr; 40(4):548-55. PubMed ID: 24477456
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance of Predictive Equations Specifically Developed to Estimate Resting Energy Expenditure in Ventilated Critically Ill Children.
    Jotterand Chaparro C; Taffé P; Moullet C; Laure Depeyre J; Longchamp D; Perez MH; Cotting J
    J Pediatr; 2017 May; 184():220-226.e5. PubMed ID: 28108105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconciling divergent results of the latest parenteral nutrition studies in the ICU.
    Singer P; Pichard C
    Curr Opin Clin Nutr Metab Care; 2013 Mar; 16(2):187-93. PubMed ID: 23385424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Permissive Underfeeding or Standard Enteral Feeding in Critically Ill Adults.
    Arabi YM; Aldawood AS; Haddad SH; Al-Dorzi HM; Tamim HM; Jones G; Mehta S; McIntyre L; Solaiman O; Sakkijha MH; Sadat M; Afesh L;
    N Engl J Med; 2015 Jun; 372(25):2398-408. PubMed ID: 25992505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Should we calculate or measure energy expenditure? practical aspects in the ICU.
    Rattanachaiwong S; Singer P
    Nutrition; 2018 Nov; 55-56():71-75. PubMed ID: 29960161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of carbon dioxide production (VCO
    Kagan I; Zusman O; Bendavid I; Theilla M; Cohen J; Singer P
    Crit Care; 2018 Aug; 22(1):186. PubMed ID: 30075796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nutrition and Clinical Outcomes of Nutrition Support in Multidisciplinary Team for Critically Ill Patients.
    Lee JS; Kang JE; Park SH; Jin HK; Jang SM; Kim SA; Rhie SJ
    Nutr Clin Pract; 2018 Oct; 33(5):633-639. PubMed ID: 29802742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.