These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 27833057)

  • 1. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches.
    Picerno P
    Gait Posture; 2017 Jan; 51():239-246. PubMed ID: 27833057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review.
    Fong DT; Chan YY
    Sensors (Basel); 2010; 10(12):11556-65. PubMed ID: 22163542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive Estimation of Joint Moments with Inertial Sensor System for Analysis of STS Rehabilitation Training.
    Liu K; Yan J; Liu Y; Ye M
    J Healthc Eng; 2018; 2018():6570617. PubMed ID: 29610656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematics and shock attenuation during a prolonged run on the athletic track as measured with inertial magnetic measurement units.
    Reenalda J; Maartens E; Buurke JH; Gruber AH
    Gait Posture; 2019 Feb; 68():155-160. PubMed ID: 30481697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification.
    Picerno P; Caliandro P; Iacovelli C; Simbolotti C; Crabolu M; Pani D; Vannozzi G; Reale G; Rossini PM; Padua L; Cereatti A
    Sci Rep; 2019 Oct; 9(1):14449. PubMed ID: 31594964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors--A validity study.
    Ertzgaard P; Öhberg F; Gerdle B; Grip H
    Man Ther; 2016 Feb; 21():241-9. PubMed ID: 26456185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wearable inertial sensors for human movement analysis.
    Iosa M; Picerno P; Paolucci S; Morone G
    Expert Rev Med Devices; 2016 Jul; 13(7):641-59. PubMed ID: 27309490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors.
    Cutti AG; Giovanardi A; Rocchi L; Davalli A; Sacchetti R
    Med Biol Eng Comput; 2008 Feb; 46(2):169-78. PubMed ID: 18087742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a model-based inverse kinematics approach based on wearable inertial sensors.
    Tagliapietra L; Modenese L; Ceseracciu E; Mazzà C; Reggiani M
    Comput Methods Biomech Biomed Engin; 2018 Dec; 21(16):834-844. PubMed ID: 30466324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics.
    Zhang JT; Novak AC; Brouwer B; Li Q
    Physiol Meas; 2013 Aug; 34(8):N63-9. PubMed ID: 23893094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Use of Wearable Sensors in Human Movement Analysis in Non-Swimming Aquatic Activities: A Systematic Review.
    Marinho DA; Neiva HP; Morais JE
    Int J Environ Res Public Health; 2019 Dec; 16(24):. PubMed ID: 31842306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable technology for spine movement assessment: A systematic review.
    Papi E; Koh WS; McGregor AH
    J Biomech; 2017 Nov; 64():186-197. PubMed ID: 29102267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new platform based on IEEE802.15.4 wireless inertial sensors for motion caption and assessment.
    Brunetti F; Moreno JC; Ruiz AF; Rocon E; Pons JL
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6497-500. PubMed ID: 17959435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human pose recovery using wireless inertial measurement units.
    Lin JF; Kulić D
    Physiol Meas; 2012 Dec; 33(12):2099-115. PubMed ID: 23174667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system.
    Watanabe T; Saito H; Koike E; Nitta K
    Comput Intell Neurosci; 2011; 2011():975193. PubMed ID: 21941531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ambulatory human motion tracking by fusion of inertial and magnetic sensing with adaptive actuation.
    Schepers HM; Roetenberg D; Veltink PH
    Med Biol Eng Comput; 2010 Jan; 48(1):27-37. PubMed ID: 20016949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial Sensor-Based Lower Limb Joint Kinematics: A Methodological Systematic Review.
    Weygers I; Kok M; Konings M; Hallez H; De Vroey H; Claeys K
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of multi-segment foot joint angles during gait using a wearable system.
    Rouhani H; Favre J; Crevoisier X; Aminian K
    J Biomech Eng; 2012 Jun; 134(6):061006. PubMed ID: 22757503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental evaluation of indoor magnetic distortion effects on gait analysis performed with wearable inertial sensors.
    Palermo E; Rossi S; Patanè F; Cappa P
    Physiol Meas; 2014 Mar; 35(3):399-415. PubMed ID: 24499774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.