BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 27833117)

  • 1. Engineering yeast for high-level production of stilbenoid antioxidants.
    Li M; Schneider K; Kristensen M; Borodina I; Nielsen J
    Sci Rep; 2016 Nov; 6():36827. PubMed ID: 27833117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.
    Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J
    Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain.
    Vos T; de la Torre Cortés P; van Gulik WM; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2015 Sep; 14():133. PubMed ID: 26369953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture.
    Yuan SF; Yi X; Johnston TG; Alper HS
    Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis.
    Heo KT; Kang SY; Hong YS
    Microb Cell Fact; 2017 Feb; 16(1):30. PubMed ID: 28202018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient biosynthesis of resveratrol via combining phenylalanine and tyrosine pathways in Saccharomyces cerevisiae.
    Meng L; Diao M; Wang Q; Peng L; Li J; Xie N
    Microb Cell Fact; 2023 Mar; 22(1):46. PubMed ID: 36890537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol.
    Becker JV; Armstrong GO; van der Merwe MJ; Lambrechts MG; Vivier MA; Pretorius IS
    FEMS Yeast Res; 2003 Oct; 4(1):79-85. PubMed ID: 14554199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae.
    Shin SY; Jung SM; Kim MD; Han NS; Seo JH
    Enzyme Microb Technol; 2012 Sep; 51(4):211-6. PubMed ID: 22883555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of yeast-based production of medicinal protoberberine alkaloids.
    Galanie S; Smolke CD
    Microb Cell Fact; 2015 Sep; 14():144. PubMed ID: 26376732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli.
    Shrestha A; Pandey RP; Pokhrel AR; Dhakal D; Chu LL; Sohng JK
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9691-9706. PubMed ID: 30178203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raising the production of phloretin by alleviation of by-product of chalcone synthase in the engineered yeast.
    Jiang C; Liu X; Chen X; Cai Y; Zhuang Y; Liu T; Zhu X; Wang H; Liu Y; Jiang H; Wang W
    Sci China Life Sci; 2020 Nov; 63(11):1734-1743. PubMed ID: 32347474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous production of resveratrol in bacterial hosts: current status and perspectives.
    Braga A; Ferreira P; Oliveira J; Rocha I; Faria N
    World J Microbiol Biotechnol; 2018 Jul; 34(8):122. PubMed ID: 30054757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of resveratrol and piceatannol in engineered microbial strains: achievements and perspectives.
    Shrestha A; Pandey RP; Sohng JK
    Appl Microbiol Biotechnol; 2019 Apr; 103(7):2959-2972. PubMed ID: 30798357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carnosic acid biosynthesis elucidated by a synthetic biology platform.
    Ignea C; Athanasakoglou A; Ioannou E; Georgantea P; Trikka FA; Loupassaki S; Roussis V; Makris AM; Kampranis SC
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3681-6. PubMed ID: 26976595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.
    Duan L; Ding W; Liu X; Cheng X; Cai J; Hua E; Jiang H
    Microb Cell Fact; 2017 Sep; 16(1):165. PubMed ID: 28950867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae.
    Chai F; Wang Y; Mei X; Yao M; Chen Y; Liu H; Xiao W; Yuan Y
    Microb Cell Fact; 2017 Mar; 16(1):54. PubMed ID: 28356104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete biosynthesis of the bisbenzylisoquinoline alkaloids guattegaumerine and berbamunine in yeast.
    Payne JT; Valentic TR; Smolke CD
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34903659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli.
    Wu J; Zhou P; Zhang X; Dong M
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1083-1095. PubMed ID: 28324236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae.
    Zhao F; Bai P; Liu T; Li D; Zhang X; Lu W; Yuan Y
    Biotechnol Bioeng; 2016 Aug; 113(8):1787-95. PubMed ID: 26757342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.