These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 27833140)
1. Speeding up GW Calculations to Meet the Challenge of Large Scale Quasiparticle Predictions. Gao W; Xia W; Gao X; Zhang P Sci Rep; 2016 Nov; 6():36849. PubMed ID: 27833140 [TBL] [Abstract][Full Text] [Related]
2. Stochastic GW Calculations for Molecules. Vlček V; Rabani E; Neuhauser D; Baer R J Chem Theory Comput; 2017 Oct; 13(10):4997-5003. PubMed ID: 28876912 [TBL] [Abstract][Full Text] [Related]
3. Charge-transfer excited states in the donor/acceptor interface from large-scale GW calculations. Fujita T; Noguchi Y; Hoshi T J Chem Phys; 2019 Sep; 151(11):114109. PubMed ID: 31542033 [TBL] [Abstract][Full Text] [Related]
4. Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides. Hung L; Bruneval F; Baishya K; Öğüt S J Chem Theory Comput; 2017 May; 13(5):2135-2146. PubMed ID: 28387124 [TBL] [Abstract][Full Text] [Related]
5. Prediction of MXene based 2D tunable band gap semiconductors: GW quasiparticle calculations. Zhang Y; Xia W; Wu Y; Zhang P Nanoscale; 2019 Mar; 11(9):3993-4000. PubMed ID: 30768118 [TBL] [Abstract][Full Text] [Related]
6. Assessing GW Approaches for Predicting Core Level Binding Energies. van Setten MJ; Costa R; Viñes F; Illas F J Chem Theory Comput; 2018 Feb; 14(2):877-883. PubMed ID: 29320628 [TBL] [Abstract][Full Text] [Related]
7. Quasiparticle band gap of ZnO: high accuracy from the conventional G⁰W⁰ approach. Shih BC; Xue Y; Zhang P; Cohen ML; Louie SG Phys Rev Lett; 2010 Oct; 105(14):146401. PubMed ID: 21230850 [TBL] [Abstract][Full Text] [Related]
8. The quasiparticle band structure of zincblende and rocksalt ZnO. Dixit H; Saniz R; Lamoen D; Partoens B J Phys Condens Matter; 2010 Mar; 22(12):125505. PubMed ID: 21389492 [TBL] [Abstract][Full Text] [Related]
9. Implementation and Validation of Fully Relativistic GW Calculations: Spin-Orbit Coupling in Molecules, Nanocrystals, and Solids. Scherpelz P; Govoni M; Hamada I; Galli G J Chem Theory Comput; 2016 Aug; 12(8):3523-44. PubMed ID: 27331614 [TBL] [Abstract][Full Text] [Related]
11. Optimized virtual orbital subspace for faster GW calculations in localized basis. Bruneval F J Chem Phys; 2016 Dec; 145(23):234110. PubMed ID: 28010103 [TBL] [Abstract][Full Text] [Related]
12. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
13. Low-Order Scaling Quasiparticle Self-Consistent GW for Molecules. Förster A; Visscher L Front Chem; 2021; 9():736591. PubMed ID: 34540804 [TBL] [Abstract][Full Text] [Related]
14. Quasiparticle self-consistent GW method for the spectral properties of complex materials. Bruneval F; Gatti M Top Curr Chem; 2014; 347():99-135. PubMed ID: 24563009 [TBL] [Abstract][Full Text] [Related]
15. Toward Efficient Koval P; Ljungberg MP; Müller M; Sánchez-Portal D J Chem Theory Comput; 2019 Aug; 15(8):4564-4580. PubMed ID: 31318555 [TBL] [Abstract][Full Text] [Related]
16. The Golze D; Dvorak M; Rinke P Front Chem; 2019; 7():377. PubMed ID: 31355177 [TBL] [Abstract][Full Text] [Related]
17. Toward GW Calculations on Thousands of Atoms. Wilhelm J; Golze D; Talirz L; Hutter J; Pignedoli CA J Phys Chem Lett; 2018 Jan; 9(2):306-312. PubMed ID: 29280376 [TBL] [Abstract][Full Text] [Related]