These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27833537)

  • 1. Forward Prediction in the Posterior Parietal Cortex and Dynamic Brain-Machine Interface.
    Cui H
    Front Integr Neurosci; 2016; 10():35. PubMed ID: 27833537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cognition in Sensorimotor Control: Interfacing With the Posterior Parietal Cortex.
    Chivukula S; Jafari M; Aflalo T; Yong NA; Pouratian N
    Front Neurosci; 2019; 13():140. PubMed ID: 30872993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Architecture and Encoding of Tactile Sensorimotor Behavior in Rat Posterior Parietal Cortex.
    Mohan H; de Haan R; Broersen R; Pieneman AW; Helmchen F; Staiger JF; Mansvelder HD; de Kock CPJ
    J Neurosci; 2019 Sep; 39(37):7332-7343. PubMed ID: 31332000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From thought to action: The brain-machine interface in posterior parietal cortex.
    Andersen RA; Aflalo T; Kellis S
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26274-26279. PubMed ID: 31871144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascending vestibular pathways to parietal areas MIP and LIPv and efference copy inputs from the medial reticular formation: Functional frameworks for body representations updating and online movement guidance.
    Ugolini G; Prevosto V; Graf W
    Eur J Neurosci; 2019 Sep; 50(6):2988-3013. PubMed ID: 31012519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience.
    Schroeder KE; Chestek CA
    Front Neurosci; 2016; 10():291. PubMed ID: 27445663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human.
    Aflalo T; Kellis S; Klaes C; Lee B; Shi Y; Pejsa K; Shanfield K; Hayes-Jackson S; Aisen M; Heck C; Liu C; Andersen RA
    Science; 2015 May; 348(6237):906-10. PubMed ID: 25999506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implicit mechanisms of intention.
    Aflalo T; Zhang C; Revechkis B; Rosario E; Pouratian N; Andersen RA
    Curr Biol; 2022 May; 32(9):2051-2060.e6. PubMed ID: 35390282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A brain-machine interface instructed by direct intracortical microstimulation.
    O'Doherty JE; Lebedev MA; Hanson TL; Fitzsimmons NA; Nicolelis MA
    Front Integr Neurosci; 2009; 3():20. PubMed ID: 19750199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding fingertip trajectory from electrocorticographic signals in humans.
    Nakanishi Y; Yanagisawa T; Shin D; Chen C; Kambara H; Yoshimura N; Fukuma R; Kishima H; Hirata M; Koike Y
    Neurosci Res; 2014 Aug; 85():20-7. PubMed ID: 24880133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Brain-Machine Interface: a novel paradigm for bidirectional interaction between brains and dynamical systems.
    Szymanski FD; Semprini M; Mussa-Ivaldi FA; Fadiga L; Panzeri S; Vato A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4592-5. PubMed ID: 22255360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Reach Goals in Depth and Direction from the Parietal Cortex.
    Filippini M; Breveglieri R; Hadjidimitrakis K; Bosco A; Fattori P
    Cell Rep; 2018 Apr; 23(3):725-732. PubMed ID: 29669279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training in Use of Brain-Machine Interface-Controlled Robotic Hand Improves Accuracy Decoding Two Types of Hand Movements.
    Fukuma R; Yanagisawa T; Yokoi H; Hirata M; Yoshimine T; Saitoh Y; Kamitani Y; Kishima H
    Front Neurosci; 2018; 12():478. PubMed ID: 30050405
    [No Abstract]   [Full Text] [Related]  

  • 14. Ipsilateral-Dominant Control of Limb Movements in Rodent Posterior Parietal Cortex.
    Soma S; Yoshida J; Kato S; Takahashi Y; Nonomura S; Sugimura YK; Ríos A; Kawabata M; Kobayashi K; Kato F; Sakai Y; Isomura Y
    J Neurosci; 2019 Jan; 39(3):485-502. PubMed ID: 30478035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-machine interfaces beyond neuroprosthetics.
    Moxon KA; Foffani G
    Neuron; 2015 Apr; 86(1):55-67. PubMed ID: 25856486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time control of a prosthetic hand using human electrocorticography signals.
    Yanagisawa T; Hirata M; Saitoh Y; Goto T; Kishima H; Fukuma R; Yokoi H; Kamitani Y; Yoshimine T
    J Neurosurg; 2011 Jun; 114(6):1715-22. PubMed ID: 21314273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding bipedal locomotion from the rat sensorimotor cortex.
    Rigosa J; Panarese A; Dominici N; Friedli L; van den Brand R; Carpaneto J; DiGiovanna J; Courtine G; Micera S
    J Neural Eng; 2015 Oct; 12(5):056014. PubMed ID: 26331532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical and subcortical mechanisms of brain-machine interfaces.
    Marchesotti S; Martuzzi R; Schurger A; Blefari ML; Del Millán JR; Bleuler H; Blanke O
    Hum Brain Mapp; 2017 Jun; 38(6):2971-2989. PubMed ID: 28321973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining decoder design and neural adaptation in brain-machine interfaces.
    Shenoy KV; Carmena JM
    Neuron; 2014 Nov; 84(4):665-80. PubMed ID: 25459407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements.
    Buneo CA; Andersen RA
    Neuropsychologia; 2006; 44(13):2594-606. PubMed ID: 16300804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.