These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27833590)

  • 21. Dual species transcript profiling during the interaction between banana (Musa acuminata) and the fungal pathogen Fusarium oxysporum f. sp. cubense.
    Li W; Wang X; Li C; Sun J; Li S; Peng M
    BMC Genomics; 2019 Jun; 20(1):519. PubMed ID: 31234790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trichothecene Genotype of Fusarium graminearum Isolates from Soybean (Glycine max) Seedling and Root Diseases in the United States.
    Ellis ML; Munkvold GP
    Plant Dis; 2014 Jul; 98(7):1012. PubMed ID: 30708932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonribosomal peptide synthetase (NPS) genes in Fusarium graminearum, F. culmorum and F. pseudograminearium and identification of NPS2 as the producer of ferricrocin.
    Tobiasen C; Aahman J; Ravnholt KS; Bjerrum MJ; Grell MN; Giese H
    Curr Genet; 2007 Jan; 51(1):43-58. PubMed ID: 17043871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TaFROG Encodes a Pooideae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum.
    Perochon A; Jianguang J; Kahla A; Arunachalam C; Scofield SR; Bowden S; Wallington E; Doohan FM
    Plant Physiol; 2015 Dec; 169(4):2895-906. PubMed ID: 26508775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The feruloyl esterase gene family of Fusarium graminearum is differentially regulated by aromatic compounds and hosts.
    Balcerzak M; Harris LJ; Subramaniam R; Ouellet T
    Fungal Biol; 2012 Apr; 116(4):478-88. PubMed ID: 22483046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative genomics of geographically distant Fusarium fujikuroi isolates revealed two distinct pathotypes correlating with secondary metabolite profiles.
    Niehaus EM; Kim HK; Münsterkötter M; Janevska S; Arndt B; Kalinina SA; Houterman PM; Ahn IP; Alberti I; Tonti S; Kim DW; Sieber CMK; Humpf HU; Yun SH; Güldener U; Tudzynski B
    PLoS Pathog; 2017 Oct; 13(10):e1006670. PubMed ID: 29073267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-Wide Analysis of Small Secreted Cysteine-Rich Proteins Identifies Candidate Effector Proteins Potentially Involved in Fusarium graminearum-Wheat Interactions.
    Lu S; Edwards MC
    Phytopathology; 2016 Feb; 106(2):166-76. PubMed ID: 26524547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum.
    Zhang L; Li B; Zhang Y; Jia X; Zhou M
    Mol Plant Pathol; 2016 Jan; 17(1):16-28. PubMed ID: 25808544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FPPI: Fusarium graminearum protein-protein interaction database.
    Zhao XM; Zhang XW; Tang WH; Chen L
    J Proteome Res; 2009 Oct; 8(10):4714-21. PubMed ID: 19673500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intraspecies Interaction of Fusarium graminearum Contributes to Reduced Toxin Production and Virulence.
    Walkowiak S; Bonner CT; Wang L; Blackwell B; Rowland O; Subramaniam R
    Mol Plant Microbe Interact; 2015 Nov; 28(11):1256-67. PubMed ID: 26125491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptome-Based Discovery of Fusarium graminearum Stress Responses to FgHV1 Infection.
    Wang S; Zhang J; Li P; Qiu D; Guo L
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27869679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum.
    Kruger WM; Pritsch C; Chao S; Muehlbauer GJ
    Mol Plant Microbe Interact; 2002 May; 15(5):445-55. PubMed ID: 12036275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fusarium graminearum KP4-like proteins possess root growth-inhibiting activity against wheat and potentially contribute to fungal virulence in seedling rot.
    Lu S; Faris JD
    Fungal Genet Biol; 2019 Feb; 123():1-13. PubMed ID: 30465882
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complete genome sequence of Janthinobacterium sp. B9-8, a violacein-producing bacterium isolated from low-temperature sewage.
    Xu X; Tian L; Zhang S; Jiang L; Zhang Z; Huang H
    Microb Pathog; 2019 Mar; 128():178-183. PubMed ID: 30610900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular characterization of a novel mycovirus of the family Tymoviridae isolated from the plant pathogenic fungus Fusarium graminearum.
    Li P; Lin Y; Zhang H; Wang S; Qiu D; Guo L
    Virology; 2016 Feb; 489():86-94. PubMed ID: 26744993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity.
    Sperschneider J; Gardiner DM; Thatcher LF; Lyons R; Singh KB; Manners JM; Taylor JM
    Genome Biol Evol; 2015 May; 7(6):1613-27. PubMed ID: 25994930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional characterization of cytochrome P450 monooxygenases in the cereal head blight fungus Fusarium graminearum.
    Shin JY; Bui DC; Lee Y; Nam H; Jung S; Fang M; Kim JC; Lee T; Kim H; Choi GJ; Son H; Lee YW
    Environ Microbiol; 2017 May; 19(5):2053-2067. PubMed ID: 28296081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isobaric tags for relative and absolute quantification-based proteomic analysis of defense responses triggered by the fungal pathogen Fusarium graminearum in wheat.
    Wang B; Li X; Chen W; Kong L
    J Proteomics; 2019 Sep; 207():103442. PubMed ID: 31326557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential Retention of Gene Functions in a Secondary Metabolite Cluster.
    Reynolds HT; Slot JC; Divon HH; Lysøe E; Proctor RH; Brown DW
    Mol Biol Evol; 2017 Aug; 34(8):2002-2015. PubMed ID: 28460114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Paralogous cyp51 genes in Fusarium graminearum mediate differential sensitivity to sterol demethylation inhibitors.
    Liu X; Yu F; Schnabel G; Wu J; Wang Z; Ma Z
    Fungal Genet Biol; 2011 Feb; 48(2):113-23. PubMed ID: 20955812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.