BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 27833593)

  • 1. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors.
    Hashimoto M; Neriya Y; Yamaji Y; Namba S
    Front Microbiol; 2016; 7():1695. PubMed ID: 27833593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recessive resistance to plant viruses.
    Truniger V; Aranda MA
    Adv Virus Res; 2009; 75():119-59. PubMed ID: 20109665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Recessive resistance to plant viruses by the deficiency of eukaryotic translation initiation factor genes.].
    Fujimoto Y; Hashimoto M; Yamaji Y
    Uirusu; 2020; 70(1):61-68. PubMed ID: 33967115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation of a Nicotiana tabacum L. eukaryotic translation-initiation factor gene reduces susceptibility to a resistance-breaking strain of Potato virus Y.
    Takakura Y; Udagawa H; Shinjo A; Koga K
    Mol Plant Pathol; 2018 Sep; 19(9):2124-2133. PubMed ID: 29633509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational control in plant antiviral immunity.
    Machado JPB; Calil IP; Santos AA; Fontes EPB
    Genet Mol Biol; 2017; 40(1 suppl 1):292-304. PubMed ID: 28199446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant Translation Factors and Virus Resistance.
    Sanfaçon H
    Viruses; 2015 Jun; 7(7):3392-419. PubMed ID: 26114476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement.
    Wang A; Krishnaswamy S
    Mol Plant Pathol; 2012 Sep; 13(7):795-803. PubMed ID: 22379950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating Cellular Factors to Combat Viruses: A Case Study From the Plant Eukaryotic Translation Initiation Factors eIF4.
    Schmitt-Keichinger C
    Front Microbiol; 2019; 10():17. PubMed ID: 30804892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple copies of eukaryotic translation initiation factors in Brassica rapa facilitate redundancy, enabling diversification through variation in splicing and broad-spectrum virus resistance.
    Nellist CF; Qian W; Jenner CE; Moore JD; Zhang S; Wang X; Briggs WH; Barker GC; Sun R; Walsh JA
    Plant J; 2014 Jan; 77(2):261-8. PubMed ID: 24274163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deficiency of the eIF4E isoform nCBP limits the cell-to-cell movement of a plant virus encoding triple-gene-block proteins in Arabidopsis thaliana.
    Keima T; Hagiwara-Komoda Y; Hashimoto M; Neriya Y; Koinuma H; Iwabuchi N; Nishida S; Yamaji Y; Namba S
    Sci Rep; 2017 Jan; 7():39678. PubMed ID: 28059075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in understanding recessive resistance to plant viruses.
    Diaz-Pendon JA; Truniger V; Nieto C; Garcia-Mas J; Bendahmane A; Aranda MA
    Mol Plant Pathol; 2004 May; 5(3):223-33. PubMed ID: 20565612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance induction based on the understanding of molecular interactions between plant viruses and host plants.
    Akhter MS; Nakahara KS; Masuta C
    Virol J; 2021 Aug; 18(1):176. PubMed ID: 34454519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signaling in induced resistance.
    Carr JP; Lewsey MG; Palukaitis P
    Adv Virus Res; 2010; 76():57-121. PubMed ID: 20965072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EXA1, a GYF domain protein, is responsible for loss-of-susceptibility to plantago asiatica mosaic virus in Arabidopsis thaliana.
    Hashimoto M; Neriya Y; Keima T; Iwabuchi N; Koinuma H; Hagiwara-Komoda Y; Ishikawa K; Himeno M; Maejima K; Yamaji Y; Namba S
    Plant J; 2016 Oct; 88(1):120-131. PubMed ID: 27402258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyramiding resistance-conferring gene sequences in crops.
    Fuchs M
    Curr Opin Virol; 2017 Oct; 26():36-42. PubMed ID: 28755651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silencing of one copy of the translation initiation factor eIFiso4G in Japanese plum (Prunus salicina) impacts susceptibility to Plum pox virus (PPV) and small RNA production.
    Rubio J; Sánchez E; Tricon D; Montes C; Eyquard JP; Chague A; Aguirre C; Prieto H; Decroocq V
    BMC Plant Biol; 2019 Oct; 19(1):440. PubMed ID: 31640557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation initiation factors: a weak link in plant RNA virus infection.
    Robaglia C; Caranta C
    Trends Plant Sci; 2006 Jan; 11(1):40-5. PubMed ID: 16343979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome Editing of
    Yoon YJ; Venkatesh J; Lee JH; Kim J; Lee HE; Kim DS; Kang BC
    Front Plant Sci; 2020; 11():1098. PubMed ID: 32849681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G.
    Gallois JL; Charron C; Sánchez F; Pagny G; Houvenaghel MC; Moretti A; Ponz F; Revers F; Caranta C; German-Retana S
    J Gen Virol; 2010 Jan; 91(Pt 1):288-93. PubMed ID: 19741065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.