These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27833745)

  • 1. Advances in real-time magnetic resonance imaging of the vocal tract for speech science and technology research.
    Toutios A; Narayanan SS
    APSIPA Trans Signal Inf Process; 2016; 5():. PubMed ID: 27833745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aeroacoustic differences between the Japanese fricatives [ɕ] and [ç].
    Yoshinaga T; Maekawa K; Iida A
    J Acoust Soc Am; 2021 Apr; 149(4):2426. PubMed ID: 33940863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The magnetic resonance imaging subset of the mngu0 articulatory corpus.
    Steiner I; Richmond K; Marshall I; Gray CD
    J Acoust Soc Am; 2012 Feb; 131(2):EL106-11. PubMed ID: 22352608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vocal tract shaping of emotional speech.
    Kim J; Toutios A; Lee S; Narayanan SS
    Comput Speech Lang; 2020 Nov; 64():. PubMed ID: 32523241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realistic Dynamic Numerical Phantom for MRI of the Upper Vocal Tract.
    Martin J; Ruthven M; Boubertakh R; Miquel ME
    J Imaging; 2020 Aug; 6(9):. PubMed ID: 34460743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic modes of vocal tract articulation for American English vowels.
    Story BH
    J Acoust Soc Am; 2005 Dec; 118(6):3834-59. PubMed ID: 16419828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modeling investigation of articulatory variability and acoustic stability during American English /r/ production.
    Nieto-Castanon A; Guenther FH; Perkell JS; Curtin HD
    J Acoust Soc Am; 2005 May; 117(5):3196-212. PubMed ID: 15957787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multispeaker dataset of raw and reconstructed speech production real-time MRI video and 3D volumetric images.
    Lim Y; Toutios A; Bliesener Y; Tian Y; Lingala SG; Vaz C; Sorensen T; Oh M; Harper S; Chen W; Lee Y; Töger J; Monteserin ML; Smith C; Godinez B; Goldstein L; Byrd D; Nayak KS; Narayanan SS
    Sci Data; 2021 Jul; 8(1):187. PubMed ID: 34285240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-registration of speech production datasets from electromagnetic articulography and real-time magnetic resonance imaging.
    Kim J; Lammert AC; Ghosh PK; Narayanan SS
    J Acoust Soc Am; 2014 Feb; 135(2):EL115-21. PubMed ID: 25234914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic 3-D visualization of vocal tract shaping during speech.
    Zhu Y; Kim YC; Proctor MI; Narayanan SS; Nayak KS
    IEEE Trans Med Imaging; 2013 May; 32(5):838-48. PubMed ID: 23204279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D dynamic MRI of the vocal tract during natural speech.
    Lim Y; Zhu Y; Lingala SG; Byrd D; Narayanan S; Nayak KS
    Magn Reson Med; 2019 Mar; 81(3):1511-1520. PubMed ID: 30390319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Articulatory tradeoffs reduce acoustic variability during American English /r/ production.
    Guenther FH; Espy-Wilson CY; Boyce SE; Matthies ML; Zandipour M; Perkell JS
    J Acoust Soc Am; 1999 May; 105(5):2854-65. PubMed ID: 10335635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved imaging of lingual articulation using real-time multislice MRI.
    Kim YC; Proctor MI; Narayanan SS; Nayak KS
    J Magn Reson Imaging; 2012 Apr; 35(4):943-8. PubMed ID: 22127935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How an aglossic speaker produces an alveolar-like percept without a functional tongue tip.
    Toutios A; Xu M; Byrd D; Goldstein L; Narayanan S
    J Acoust Soc Am; 2020 Jun; 147(6):EL460. PubMed ID: 32611190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Producing American English vowels during vocal tract growth: a perceptual categorization study of synthesized vowels.
    Ménard L; Davis BL; Boë LJ; Roy JP
    J Speech Lang Hear Res; 2009 Oct; 52(5):1268-85. PubMed ID: 19696438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging of the brain and vocal tract: Applications to the study of speech production and language learning.
    Carey D; McGettigan C
    Neuropsychologia; 2017 Apr; 98():201-211. PubMed ID: 27288115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic modeling of American English /r/.
    Espy-Wilson CY; Boyce SE; Jackson M; Narayanan S; Alwan A
    J Acoust Soc Am; 2000 Jul; 108(1):343-56. PubMed ID: 10923897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing Articulation in Apraxic Speech Using Real-Time Magnetic Resonance Imaging.
    Hagedorn C; Proctor M; Goldstein L; Wilson SM; Miller B; Gorno-Tempini ML; Narayanan SS
    J Speech Lang Hear Res; 2017 Apr; 60(4):877-891. PubMed ID: 28314241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of phonetic constraints in acoustic-to-articulatory inversion.
    Potard B; Laprie Y; Ouni S
    J Acoust Soc Am; 2008 Apr; 123(4):2310-23. PubMed ID: 18397035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward dynamic magnetic resonance imaging of the vocal tract during speech production.
    Ventura SM; Freitas DR; Tavares JM
    J Voice; 2011 Jul; 25(4):511-8. PubMed ID: 20471801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.