These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2783425)

  • 1. A highly accurate method of localizing regions of neuronal activation in the human brain with positron emission tomography.
    Mintun MA; Fox PT; Raichle ME
    J Cereb Blood Flow Metab; 1989 Feb; 9(1):96-103. PubMed ID: 2783425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Integrated and automated data analysis for neuronal activation studies using positron emission tomography: methodology and applications].
    Minoshima S; Koeppe RA; Kuhl DE; Arimizu N
    Kaku Igaku; 1994 Aug; 31(8):891-908. PubMed ID: 7933678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using (10)CO2 for single subject characterization of the stimulus frequency dependence in visual cortex: a novel positron emission tomography tracer for human brain mapping.
    Law I; Jensen M; Holm S; Nickles RJ; Paulson OB
    J Cereb Blood Flow Metab; 2001 Aug; 21(8):1003-12. PubMed ID: 11487736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of timing and duration of cognitive activation in [15O]water PET studies.
    Hurtig RR; Hichwa RD; O'Leary DS; Boles Ponto LL; Narayana S; Watkins GL; Andreasen NC
    J Cereb Blood Flow Metab; 1994 May; 14(3):423-30. PubMed ID: 8163584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting human functional maps with neural net modeling.
    Horwitz B; Tagamets MA
    Hum Brain Mapp; 1999; 8(2-3):137-42. PubMed ID: 10524605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping human visual cortex with positron emission tomography.
    Fox PT; Mintun MA; Raichle ME; Miezin FM; Allman JM; Van Essen DC
    Nature; 1986 Oct 30-Nov 5; 323(6091):806-9. PubMed ID: 3534580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative positron emission tomography and single photon emission computed tomography measurements of human cerebral blood flow.
    Lagrèze HL; Levine RL
    Am J Physiol Imaging; 1987; 2(4):208-15. PubMed ID: 3330454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy and precision of the computerized brain atlas programme for localization and quantification in positron emission tomography.
    Seitz RJ; Bohm C; Greitz T; Roland PE; Eriksson L; Blomqvist G; Rosenqvist G; Nordell B
    J Cereb Blood Flow Metab; 1990 Jul; 10(4):443-57. PubMed ID: 2347878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional correction of positron emission tomography data for the effects of cerebral atrophy.
    Videen TO; Perlmutter JS; Mintun MA; Raichle ME
    J Cereb Blood Flow Metab; 1988 Oct; 8(5):662-70. PubMed ID: 3262114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain activation induced by estimation of duration: a PET study.
    Maquet P; Lejeune H; Pouthas V; Bonnet M; Casini L; Macar F; Timsit-Berthier M; Vidal F; Ferrara A; Degueldre C; Quaglia L; Delfiore G; Luxen A; Woods R; Mazziotta JC; Comar D
    Neuroimage; 1996 Apr; 3(2):119-26. PubMed ID: 9345483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional MR mapping of activated cortical areas.
    Brix G; Gückel F; Bellemann ME; Röther J; Schwartz A; Ostertag HJ; Lorenz WJ
    Nuklearmedizin; 1994 Oct; 33(5):200-5. PubMed ID: 7997378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic brain imaging: grasping, mirror neurons and imitation.
    Arbib MA; Billard A; Iacoboni M; Oztop E
    Neural Netw; 2000; 13(8-9):975-97. PubMed ID: 11156205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visuomotor transformations for reaching to memorized targets: a PET study.
    Lacquaniti F; Perani D; Guigon E; Bettinardi V; Carrozzo M; Grassi F; Rossetti Y; Fazio F
    Neuroimage; 1997 Feb; 5(2):129-46. PubMed ID: 9345543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural group analysis of functional activation maps.
    Coulon O; Mangin JF; Poline JB; Zilbovicius M; Roumenov D; Samson Y; Frouin V; Bloch I
    Neuroimage; 2000 Jun; 11(6 Pt 1):767-82. PubMed ID: 10860801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography.
    Bittar RG; Olivier A; Sadikot AF; Andermann F; Pike GB; Reutens DC
    J Neurosurg; 1999 Dec; 91(6):915-21. PubMed ID: 10584835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional brain mapping of monkey tool use.
    Obayashi S; Suhara T; Kawabe K; Okauchi T; Maeda J; Akine Y; Onoe H; Iriki A
    Neuroimage; 2001 Oct; 14(4):853-61. PubMed ID: 11554804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of a human system for sustained attention by positron emission tomography.
    Pardo JV; Fox PT; Raichle ME
    Nature; 1991 Jan; 349(6304):61-4. PubMed ID: 1985266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of PET neurofunctional mapping studies.
    Votaw JR; Li HH
    J Cereb Blood Flow Metab; 1995 May; 15(3):492-504. PubMed ID: 7714008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thinking nuclear medicine--PET activation.
    Cowell SF; Code C
    J Nucl Med Technol; 1998 Mar; 26(1):17-22. PubMed ID: 9549687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive functional brain mapping by change-distribution analysis of averaged PET images of H215O tissue activity.
    Fox PT; Mintun MA
    J Nucl Med; 1989 Feb; 30(2):141-9. PubMed ID: 2786929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.