These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27834379)

  • 1. Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators.
    Malvar O; Ruz JJ; Kosaka PM; Domínguez CM; Gil-Santos E; Calleja M; Tamayo J
    Nat Commun; 2016 Nov; 7():13452. PubMed ID: 27834379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass Spectrometry of Heavy Analytes and Large Biological Aggregates by Monitoring Changes in the Quality Factor of Nanomechanical Resonators in Air.
    Stachiv I; Gan L; Kuo CY; Šittner P; Ševeček O
    ACS Sens; 2020 Jul; 5(7):2128-2135. PubMed ID: 32551518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-protein nanomechanical mass spectrometry in real time.
    Hanay MS; Kelber S; Naik AK; Chi D; Hentz S; Bullard EC; Colinet E; Duraffourg L; Roukes ML
    Nat Nanotechnol; 2012 Sep; 7(9):602-8. PubMed ID: 22922541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards single-molecule nanomechanical mass spectrometry.
    Naik AK; Hanay MS; Hiebert WK; Feng XL; Roukes ML
    Nat Nanotechnol; 2009 Jul; 4(7):445-50. PubMed ID: 19581898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Watching single nanoparticles grow in real time through supercontinuum spectroscopy.
    Herrmann LO; Baumberg JJ
    Small; 2013 Nov; 9(22):3743-7. PubMed ID: 23650155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Shape Memory Alloy-Based Nanomechanical Resonators for Ultrathin Film Elastic Properties Determination and Heavy Mass Spectrometry.
    Stachiv I; Gan L
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31683696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AES and ToF-SIMS combination for single cell chemical imaging of gold nanoparticle-labeled
    Courrèges C; Bonnecaze M; Flahaut D; Nolivos S; Grimaud R; Allouche J
    Chem Commun (Camb); 2021 Jun; 57(44):5446-5449. PubMed ID: 33950059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An atomic-resolution nanomechanical mass sensor.
    Jensen K; Kim K; Zettl A
    Nat Nanotechnol; 2008 Sep; 3(9):533-7. PubMed ID: 18772913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems.
    Chen Y; Preece JA; Palmer RE
    Ann N Y Acad Sci; 2008; 1130():201-6. PubMed ID: 18596349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale fiber-optic force sensors for mechanical probing at the molecular and cellular level.
    Shi Y; Polat B; Huang Q; Sirbuly DJ
    Nat Protoc; 2018 Nov; 13(11):2714-2739. PubMed ID: 30367169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric control of nanomechanical DNA origami pinching devices for enhanced target binding.
    Kuzuya A; Sakai Y; Yamazaki T; Xu Y; Yamanaka Y; Ohya Y; Komiyama M
    Chem Commun (Camb); 2017 Jul; 53(59):8276-8279. PubMed ID: 28681899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanoparticle aggregation-based highly sensitive DNA detection using atomic force microscopy.
    Bui MP; Baek TJ; Seong GH
    Anal Bioanal Chem; 2007 Jul; 388(5-6):1185-90. PubMed ID: 17534606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photothermal reshaping of gold nanoparticles in a plasmonic absorber.
    Wang J; Chen Y; Chen X; Hao J; Yan M; Qiu M
    Opt Express; 2011 Jul; 19(15):14726-34. PubMed ID: 21934835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caffeic acid: potential applications in nanotechnology as a green reducing agent for sustainable synthesis of gold nanoparticles.
    Seo YS; Cha SH; Yoon HR; Kang YH; Park Y
    Nat Prod Commun; 2015 Apr; 10(4):627-30. PubMed ID: 25973494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry.
    Marsico AL; Creran B; Duncan B; Elci SG; Jiang Y; Onasch TB; Wormhoudt J; Rotello VM; Vachet RW
    J Am Soc Mass Spectrom; 2015 Nov; 26(11):1931-7. PubMed ID: 26202457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A "molecular eraser" for dip-pen nanolithography.
    Jang JW; Maspoch D; Fujigaya T; Mirkin CA
    Small; 2007 Apr; 3(4):600-5. PubMed ID: 17328015
    [No Abstract]   [Full Text] [Related]  

  • 17. Faradaurate-940: synthesis, mass spectrometry, electron microscopy, high-energy X-ray diffraction, and X-ray scattering study of Au∼940±20(SR)∼160±4 nanocrystals.
    Kumara C; Zuo X; Cullen DA; Dass A
    ACS Nano; 2014 Jun; 8(6):6431-9. PubMed ID: 24813022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles.
    Perni S; Piccirillo C; Pratten J; Prokopovich P; Chrzanowski W; Parkin IP; Wilson M
    Biomaterials; 2009 Jan; 30(1):89-93. PubMed ID: 18838166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-selective integration of monolayer-protected inorganic nanoparticles onto surface monolayer templates by a solvent-induced lift-off process.
    Akamatsu K; Samitsu S; Tsuruoka T; Hasegawa J; Nawafune H
    Small; 2006 Oct; 2(10):1130-3. PubMed ID: 17193576
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.