These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27835641)

  • 41. Local control of postinhibitory rebound spiking in CA1 pyramidal neuron dendrites.
    Ascoli GA; Gasparini S; Medinilla V; Migliore M
    J Neurosci; 2010 May; 30(18):6434-42. PubMed ID: 20445069
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Presynaptic inhibition of primary afferents by depolarization: observations supporting nontraditional mechanisms.
    Hochman S; Shreckengost J; Kimura H; Quevedo J
    Ann N Y Acad Sci; 2010 Jun; 1198():140-52. PubMed ID: 20536928
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Independent control of presynaptic inhibition by reticulospinal and sensory inputs at rest and during rhythmic activities in the cat.
    Sirois J; Frigon A; Gossard JP
    J Neurosci; 2013 May; 33(18):8055-67. PubMed ID: 23637195
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Antidromic discharges in dorsal roots of decerebrate cats. I. Studies at rest and during fictive locomotion.
    Beloozerova I; Rossignol S
    Brain Res; 1999 Oct; 846(1):87-105. PubMed ID: 10536216
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transient, activity dependent inhibition of transmitter release from low threshold afferents mediated by GABAA receptors in spinal cord lamina III/IV.
    Betelli C; MacDermott AB; Bardoni R
    Mol Pain; 2015 Oct; 11():64. PubMed ID: 26463733
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Substantia Gelatinosa neurons in defined-medium organotypic slice culture are similar to those in acute slices from young adult rats.
    Lu VB; Moran TD; Balasubramanyan S; Alier KA; Dryden WF; Colmers WF; Smith PA
    Pain; 2006 Apr; 121(3):261-275. PubMed ID: 16516387
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterisation of rat superficial superior colliculus neurones: firing properties and sensitivity to GABA.
    Edwards MD; White AM; Platt B
    Neuroscience; 2002; 110(1):93-104. PubMed ID: 11882375
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Presynaptic selection of afferent inflow in the spinal cord.
    Rudomin P
    J Physiol Paris; 1999; 93(4):329-47. PubMed ID: 10574122
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bicuculline-sensitive primary afferent depolarization remains after greatly restricting synaptic transmission in the mammalian spinal cord.
    Shreckengost J; Calvo J; Quevedo J; Hochman S
    J Neurosci; 2010 Apr; 30(15):5283-8. PubMed ID: 20392950
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Presynaptic inhibition in the crayfish CNS: pathways and synaptic mechanisms.
    Kirk MD
    J Neurophysiol; 1985 Nov; 54(5):1305-25. PubMed ID: 3001237
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Peripheral GABAergic inhibition of spider mechanosensory afferents.
    Panek I; French AS; Seyfarth EA; Sekizawa S; Torkkeli PH
    Eur J Neurosci; 2002 Jul; 16(1):96-104. PubMed ID: 12153534
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of halothane on neuronal excitation in the superficial dorsal horn of rat spinal cord slices: evidence for a presynaptic action.
    Asai T; Kusudo K; Ikeda H; Takenoshita M; Murase K
    Eur J Neurosci; 2002 Apr; 15(8):1278-90. PubMed ID: 11994122
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multimodal convergence of presynaptic afferent inhibition in insect proprioceptors.
    Stein W; Schmitz J
    J Neurophysiol; 1999 Jul; 82(1):512-4. PubMed ID: 10400981
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord.
    García-Ramírez DL; Calvo JR; Hochman S; Quevedo JN
    PLoS One; 2014; 9(2):e89999. PubMed ID: 24587177
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons.
    Prescott SA; Ratté S; De Koninck Y; Sejnowski TJ
    J Neurosci; 2006 Sep; 26(36):9084-97. PubMed ID: 16957065
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of molecular pathologies sufficient to cause neuropathic excitability in primary somatosensory afferents using dynamical systems theory.
    Rho YA; Prescott SA
    PLoS Comput Biol; 2012; 8(5):e1002524. PubMed ID: 22654655
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Presynaptic inhibition of primary olfactory afferents mediated by different mechanisms in lobster and turtle.
    Wachowiak M; Cohen LB
    J Neurosci; 1999 Oct; 19(20):8808-17. PubMed ID: 10516300
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased conduction velocity of nociceptive primary afferent neurons during unilateral hindlimb inflammation in the anaesthetised guinea-pig.
    Djouhri L; Lawson SN
    Neuroscience; 2001; 102(3):669-79. PubMed ID: 11226703
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Central control of information transmission through the intraspinal arborizations of sensory fibers examined 100 years after Ramón y Cajal.
    Rudomin P
    Prog Brain Res; 2002; 136():409-21. PubMed ID: 12143398
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABA(A) receptors.
    Lorenzo LE; Godin AG; Wang F; St-Louis M; Carbonetto S; Wiseman PW; Ribeiro-da-Silva A; De Koninck Y
    J Neurosci; 2014 Jun; 34(24):8300-17. PubMed ID: 24920633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.