These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27835814)

  • 1. Probing size-dependent electrokinetics of hematite aggregates.
    Kedra-Królik K; Rosso KM; Zarzycki P
    J Colloid Interface Sci; 2017 Feb; 488():218-224. PubMed ID: 27835814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrokinetics of concentrated suspensions of spherical colloidal particles with surface conductance, arbitrary zeta potential, and double-layer thickness in static electric fields.
    Carrique F; Arroyo FJ; Delgado AV
    J Colloid Interface Sci; 2002 Aug; 252(1):126-37. PubMed ID: 16290771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of electrostatics and electrokinetics of soft particles.
    Ohshima H
    Sci Technol Adv Mater; 2009 Dec; 10(6):063001. PubMed ID: 27877310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electrophoretic mobility of an uncharged particle.
    O'Brien RW; Beattie JK; Djerdjev AM
    J Colloid Interface Sci; 2014 Apr; 420():70-3. PubMed ID: 24559702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of non-equilibrium association-dissociation processes in the dynamic electrophoretic mobility and dielectric response of realistic salt-free concentrated suspensions.
    Carrique F; Ruiz-Reina E; Lechuga L; Arroyo FJ; Delgado Á
    Adv Colloid Interface Sci; 2013 Dec; 201-202():57-67. PubMed ID: 24161224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles.
    Leroy P; Devau N; Revil A; Bizi M
    J Colloid Interface Sci; 2013 Nov; 410():81-93. PubMed ID: 24011560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface charge and interfacial potential of titanium dioxide nanoparticles: experimental and theoretical investigations.
    Holmberg JP; Ahlberg E; Bergenholtz J; Hassellöv M; Abbas Z
    J Colloid Interface Sci; 2013 Oct; 407():168-76. PubMed ID: 23859811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophoretic mobility of a colloidal particle with constant surface charge density.
    Makino K; Ohshima H
    Langmuir; 2010 Dec; 26(23):18016-9. PubMed ID: 21047090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the Exact Particle Radius Distribution for Silica Nanoparticles via Capillary Electrophoresis and Modeling the Electrophoretic Mobility with a Modified Analytic Approximation.
    Fichtner A; Jalil A; Pyell U
    Langmuir; 2017 Mar; 33(9):2325-2339. PubMed ID: 28194970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of dispersions of colloidal hematite/yttrium oxide core-shell particles.
    Plaza RC; Quirantes A; Delgado AV
    J Colloid Interface Sci; 2002 Aug; 252(1):102-8. PubMed ID: 16290768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of water dissociation and CO2 contamination on the electrophoretic mobility of a spherical particle in aqueous salt-free concentrated suspensions.
    Carrique F; Ruiz-Reina E
    J Phys Chem B; 2009 Jun; 113(25):8613-25. PubMed ID: 19485311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hematite nanoparticle monolayers on mica electrokinetic characteristics.
    Morga M; Adamczyk Z; Oćwieja M
    J Colloid Interface Sci; 2012 Nov; 386(1):121-8. PubMed ID: 22921408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetic phenomena in a dilute suspension of spherical solid colloidal particles with a hydrodynamically slipping surface in an aqueous electrolyte solution.
    Ohshima H
    Adv Colloid Interface Sci; 2019 Oct; 272():101996. PubMed ID: 31421456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer adsorption and electrokinetic potential of dispersed particles in weak and strong electric fields.
    Barany S
    Adv Colloid Interface Sci; 2015 Aug; 222():58-69. PubMed ID: 25456453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Analysis of Electrophoresis of Concentrated Suspensions of Colloidal Particles.
    Johnson TJ; Davis EJ
    J Colloid Interface Sci; 1999 Jul; 215(2):397-408. PubMed ID: 10419675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging effects in the electrokinetics of colloidal iron oxides.
    Plaza RC; Arias JL; Espín M; Jiménez ML; Delgado AV
    J Colloid Interface Sci; 2002 Jan; 245(1):86-90. PubMed ID: 16290339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial and rheological properties of humic acid/hematite suspensions.
    Ramos-Tejada MM; Ontiveros A; Viota JL; Durán JD
    J Colloid Interface Sci; 2003 Dec; 268(1):85-95. PubMed ID: 14611777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hematite nanoparticle monolayers on mica preparation by controlled self-assembly.
    Oćwieja M; Adamczyk Z; Morga M; Bielańska E; Węgrzynowicz A
    J Colloid Interface Sci; 2012 Nov; 386(1):51-9. PubMed ID: 22909964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolution of hematite nanoparticle aggregates: influence of primary particle size, dissolution mechanism, and solution pH.
    Lanzl CA; Baltrusaitis J; Cwiertny DM
    Langmuir; 2012 Nov; 28(45):15797-808. PubMed ID: 23078147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.