BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 27835923)

  • 1. Reactive Oxygen Species/Nitric Oxide Mediated Inter-Organ Communication in Skeletal Muscle Wasting Diseases.
    Leitner LM; Wilson RJ; Yan Z; Gödecke A
    Antioxid Redox Signal; 2017 May; 26(13):700-717. PubMed ID: 27835923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs.
    Solagna F; Tezze C; Lindenmeyer MT; Lu S; Wu G; Liu S; Zhao Y; Mitchell R; Meyer C; Omairi S; Kilic T; Paolini A; Ritvos O; Pasternack A; Matsakas A; Kylies D; Wiesch JSZ; Turner JE; Wanner N; Nair V; Eichinger F; Menon R; Martin IV; Klinkhammer BM; Hoxha E; Cohen CD; Tharaux PL; Boor P; Ostendorf T; Kretzler M; Sandri M; Kretz O; Puelles VG; Patel K; Huber TB
    J Clin Invest; 2021 Jun; 131(11):. PubMed ID: 34060483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myostatin: more than just a regulator of muscle mass.
    Argilés JM; Orpí M; Busquets S; López-Soriano FJ
    Drug Discov Today; 2012 Jul; 17(13-14):702-9. PubMed ID: 22342983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms to explain wasting of muscle and fat in cancer cachexia.
    Argilés JM; López-Soriano FJ; Busquets S
    Curr Opin Support Palliat Care; 2007 Dec; 1(4):293-8. PubMed ID: 18685378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging therapies for the treatment of skeletal muscle wasting in chronic obstructive pulmonary disease.
    Passey SL; Hansen MJ; Bozinovski S; McDonald CF; Holland AE; Vlahos R
    Pharmacol Ther; 2016 Oct; 166():56-70. PubMed ID: 27373503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting.
    Song YH; Li Y; Du J; Mitch WE; Rosenthal N; Delafontaine P
    J Clin Invest; 2005 Feb; 115(2):451-8. PubMed ID: 15650772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of beta-adrenoceptor signaling in skeletal muscle: therapeutic implications for muscle wasting disorders.
    Koopman R; Ryall JG; Church JE; Lynch GS
    Curr Opin Clin Nutr Metab Care; 2009 Nov; 12(6):601-6. PubMed ID: 19741516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biological mechanisms of cancer-related skeletal muscle wasting: the role of progressive resistance exercise.
    Al-Majid S; Waters H
    Biol Res Nurs; 2008 Jul; 10(1):7-20. PubMed ID: 18705151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting.
    Zimmers TA; Jiang Y; Wang M; Liang TW; Rupert JE; Au ED; Marino FE; Couch ME; Koniaris LG
    Basic Res Cardiol; 2017 Jul; 112(4):48. PubMed ID: 28647906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sarcopenia in Chronic Kidney Disease: Factors, Mechanisms, and Therapeutic Interventions.
    Watanabe H; Enoki Y; Maruyama T
    Biol Pharm Bull; 2019; 42(9):1437-1445. PubMed ID: 31474705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforming growth factor type beta (TGF-β) requires reactive oxygen species to induce skeletal muscle atrophy.
    Abrigo J; Rivera JC; Simon F; Cabrera D; Cabello-Verrugio C
    Cell Signal; 2016 May; 28(5):366-376. PubMed ID: 26825874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice.
    Merry TL; Ristow M
    J Physiol; 2016 Sep; 594(18):5195-207. PubMed ID: 27094017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Redox Balance: A Target for Interventions Against Muscle Wasting in Cancer Cachexia?
    Penna F; Ballarò R; Costelli P
    Antioxid Redox Signal; 2020 Sep; 33(8):542-558. PubMed ID: 32037856
    [No Abstract]   [Full Text] [Related]  

  • 14. Pre-cachexia in patients with stages I-III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system.
    Op den Kamp CM; Langen RC; Minnaard R; Kelders MC; Snepvangers FJ; Hesselink MK; Dingemans AC; Schols AM
    Lung Cancer; 2012 Apr; 76(1):112-7. PubMed ID: 22018880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress, chronic disease, and muscle wasting.
    Moylan JS; Reid MB
    Muscle Nerve; 2007 Apr; 35(4):411-29. PubMed ID: 17266144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological strategies in lung cancer-induced cachexia: effects on muscle proteolysis, autophagy, structure, and weakness.
    Chacon-Cabrera A; Fermoselle C; Urtreger AJ; Mateu-Jimenez M; Diament MJ; de Kier Joffé ED; Sandri M; Barreiro E
    J Cell Physiol; 2014 Nov; 229(11):1660-72. PubMed ID: 24615622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer.
    Puig-Vilanova E; Rodriguez DA; Lloreta J; Ausin P; Pascual-Guardia S; Broquetas J; Roca J; Gea J; Barreiro E
    Free Radic Biol Med; 2015 Feb; 79():91-108. PubMed ID: 25464271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH oxidase hyperactivity induces plantaris atrophy in heart failure rats.
    Bechara LR; Moreira JB; Jannig PR; Voltarelli VA; Dourado PM; Vasconcelos AR; Scavone C; Ramires PR; Brum PC
    Int J Cardiol; 2014 Aug; 175(3):499-507. PubMed ID: 25023789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation.
    Anker SD; Coats AJ
    Chest; 1999 Mar; 115(3):836-47. PubMed ID: 10084500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress.
    Puente-Maestu L; Tejedor A; Lázaro A; de Miguel J; Alvarez-Sala L; González-Aragoneses F; Simón C; Agustí A
    Am J Respir Cell Mol Biol; 2012 Sep; 47(3):358-62. PubMed ID: 22493009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.