These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 27836339)
21. Direct and indirect drift assessment means. Part 1: PDPA laser based droplet characterisation. Nuyttens D; Baetens K; De Schampheleire M; Dekeyser D; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):749-56. PubMed ID: 19226824 [TBL] [Abstract][Full Text] [Related]
22. Direct and indirect drift assessment means. Part 2: wind tunnel experiments. Nuyttens D; De Schampheleire M; Baetens K; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):757-61. PubMed ID: 19226825 [TBL] [Abstract][Full Text] [Related]
23. Drift-reducing nozzles and their biological efficacy. Nuyttens D; Dhoop M; De Blauwer V; Hermann O; Hubrechts W; Mestdagh I; Dekeyser D Commun Agric Appl Biol Sci; 2009; 74(1):47-55. PubMed ID: 20218510 [TBL] [Abstract][Full Text] [Related]
24. Direct and indirect drift assessment means. Part 3: field drift experiments. Nuyttens D; De Schampheleire M; Baetens K; Dekeyser D; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):763-7. PubMed ID: 19226826 [TBL] [Abstract][Full Text] [Related]
25. Spray distribution evaluation of different settings of a hand-held-trolley sprayer used in greenhouse tomato crops. Llop J; Gil E; Gallart M; Contador F; Ercilla M Pest Manag Sci; 2016 Mar; 72(3):505-16. PubMed ID: 25827061 [TBL] [Abstract][Full Text] [Related]
26. Assessment of spray drift potential reduction for hollow-cone nozzles: Part 1. Classification using indirect methods. Torrent X; Gregorio E; Douzals JP; Tinet C; Rosell-Polo JR; Planas S Sci Total Environ; 2019 Nov; 692():1322-1333. PubMed ID: 31248581 [TBL] [Abstract][Full Text] [Related]
27. Classification of spray nozzles based on droplet size distributions and wind tunnel tests. De Schamphelerie M; Spanoghe P; Nuyttens D; Baetens K; Cornelis W; Gabriels D; Van der Meeren P Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):201-7. PubMed ID: 17390794 [TBL] [Abstract][Full Text] [Related]
28. Comparison of the drift potential of two application methods for the control of oak processionary moths with biocidal products in an oak avenue. Langkamp-Wedde T; Rautmann D; von Hörsten D; Wegener JK Sci Total Environ; 2020 Feb; 704():135313. PubMed ID: 31787302 [TBL] [Abstract][Full Text] [Related]
29. Effect of nozzle selection on deposition of thiamethoxam in Actara® spray drift and implications for off-field risk assessment. Perine J; Anderson JC; Kruger GR; Abi-Akar F; Overmyer J Sci Total Environ; 2021 Jun; 772():144808. PubMed ID: 33770886 [TBL] [Abstract][Full Text] [Related]
30. Droplets deposition pattern from a prototype of a fixed spraying system in a sloping vineyard. Otto S; Loddo D; Schmid A; Roschatt C; Venturelli M; Innerebner G Sci Total Environ; 2018 Oct; 639():92-99. PubMed ID: 29778687 [TBL] [Abstract][Full Text] [Related]
31. Optimization of the spray application technology in bay laurel (Laurus nobilis). Nuyttens D; Braekman P; Foque D Commun Agric Appl Biol Sci; 2009; 74(1):85-90. PubMed ID: 20218514 [TBL] [Abstract][Full Text] [Related]
32. Real-time particle monitoring of pesticide drift from an axial fan airblast orchard sprayer. Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E J Expo Sci Environ Epidemiol; 2019 Apr; 29(3):397-405. PubMed ID: 30425317 [TBL] [Abstract][Full Text] [Related]
33. Risk assessment of environmental and bystander exposure from agricultural unmanned aerial vehicle sprayers in golden coconut plantations: Effects of droplet size and spray volume. Lan X; Wang J; Chen P; Liang Q; Zhang L; Ma C Ecotoxicol Environ Saf; 2024 Sep; 282():116675. PubMed ID: 38971099 [TBL] [Abstract][Full Text] [Related]
34. Winds of change, developing a non-target plant bioassay employing field-based pesticide drift exposure: A case study with atrazine. Brain R; Goodwin G; Abi-Akar F; Lee B; Rodgers C; Flatt B; Lynn A; Kruger G; Perkins D Sci Total Environ; 2019 Aug; 678():239-252. PubMed ID: 31075591 [TBL] [Abstract][Full Text] [Related]
35. Effects of sprayer speed, spray distance, and nozzle arrangement angle on low-flow air-assisted spray deposition. Dai S; Ou M; Du W; Yang X; Dong X; Jiang L; Zhang T; Ding S; Jia W Front Plant Sci; 2023; 14():1184244. PubMed ID: 37223814 [TBL] [Abstract][Full Text] [Related]
36. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Wang G; Han Y; Li X; Andaloro J; Chen P; Hoffmann WC; Han X; Chen S; Lan Y Sci Total Environ; 2020 Oct; 737():139793. PubMed ID: 32526578 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of the Intelligent Sprayer System in Peach Production. Boatwright H; Zhu H; Clark A; Schnabel G Plant Dis; 2020 Dec; 104(12):3207-3212. PubMed ID: 33026954 [TBL] [Abstract][Full Text] [Related]
39. Boom sprayer optimizations for bed-grown carrots at different growth stages based on spray distribution and droplet characteristics. Zwertvaegher I; Lamare A; Douzals JP; Balsari P; Marucco P; Grella M; Caffini A; Mylonas N; Dekeyser D; Foqué D; Nuyttens D Pest Manag Sci; 2022 Apr; 78(4):1729-1739. PubMed ID: 34995010 [TBL] [Abstract][Full Text] [Related]
40. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]