These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 27836407)
1. Environmental application of millimetre-scale sponge iron (s-Fe Ju Y; Yu Y; Wang X; Xiang M; Li L; Deng D; Dionysiou DD J Hazard Mater; 2017 Feb; 323(Pt B):611-620. PubMed ID: 27836407 [TBL] [Abstract][Full Text] [Related]
2. Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): the effect of surface copper. Ju Y; Liu X; Liu R; Li G; Wang X; Yang Y; Wei D; Fang J; Dionysiou DD J Hazard Mater; 2015 Apr; 287():325-34. PubMed ID: 25668301 [TBL] [Abstract][Full Text] [Related]
3. Facile hydrothermal synthesis of Fe Jiao Y; Wan C; Bao W; Gao H; Liang D; Li J Carbohydr Polym; 2018 Jun; 189():371-378. PubMed ID: 29580421 [TBL] [Abstract][Full Text] [Related]
4. Engineering controllable oxygen vacancy defects in iron hydroxide oxide immobilized on reduced graphene oxide for boosting visible light-driven photo-Fenton-like oxidation. Wu X; Liu T; Ni W; Yang H; Huang H; He S; Li C; Ning H; Wu W; Zhao Q; Wu M J Colloid Interface Sci; 2022 Oct; 623():9-20. PubMed ID: 35561576 [TBL] [Abstract][Full Text] [Related]
5. Enhanced removal of organic using LaFeO Phan TTN; Nikoloski AN; Bahri PA; Li D J Environ Manage; 2019 Mar; 233():471-480. PubMed ID: 30593006 [TBL] [Abstract][Full Text] [Related]
6. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants. Subramanian G; Madras G Water Res; 2016 Nov; 104():168-177. PubMed ID: 27522633 [TBL] [Abstract][Full Text] [Related]
7. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark. Nieto-Juarez JI; Kohn T Photochem Photobiol Sci; 2013 Sep; 12(9):1596-605. PubMed ID: 23698031 [TBL] [Abstract][Full Text] [Related]
8. Influence of operational key parameters on the photocatalytic decolorization of Rhodamine B dye using Fe2+/H2O2/Nb2O5/UV system. Hashemzadeh F; Rahimi R; Gaffarinejad A Environ Sci Pollut Res Int; 2014 Apr; 21(7):5121-31. PubMed ID: 24374619 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of photo-Fenton catalytic activity with the assistance of oxalic acid on the kaolin-FeOOH system for the degradation of organic dyes. Xiao C; Li S; Yi F; Zhang B; Chen D; Zhang Y; Chen H; Huang Y RSC Adv; 2020 May; 10(32):18704-18714. PubMed ID: 35518336 [TBL] [Abstract][Full Text] [Related]
10. Photo-Fenton degradation of rhodamine B using Fe2O3-Kaolin as heterogeneous catalyst: characterization, process optimization and mechanism. Guo S; Zhang G; Wang J J Colloid Interface Sci; 2014 Nov; 433():1-8. PubMed ID: 25093942 [TBL] [Abstract][Full Text] [Related]
11. Enhanced photo-Fenton degradation of rhodamine B using graphene oxide-amorphous FePO₄ as effective and stable heterogeneous catalyst. Guo S; Zhang G; Yu JC J Colloid Interface Sci; 2015 Jun; 448():460-6. PubMed ID: 25768888 [TBL] [Abstract][Full Text] [Related]
12. Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism. Gomathi Devi L; Girish Kumar S; Mohan Reddy K; Munikrishnappa C J Hazard Mater; 2009 May; 164(2-3):459-67. PubMed ID: 18805635 [TBL] [Abstract][Full Text] [Related]
13. Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV-Vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater. Rubio D; Nebot E; Casanueva JF; Pulgarin C Water Res; 2013 Oct; 47(16):6367-79. PubMed ID: 24035676 [TBL] [Abstract][Full Text] [Related]
14. Reutilization of iron sludge as heterogeneous Fenton catalyst for the degradation of rhodamine B: Role of sulfur and mesoporous structure. Guo S; Yang Z; Wen Z; Fida H; Zhang G; Chen J J Colloid Interface Sci; 2018 Dec; 532():441-448. PubMed ID: 30103128 [TBL] [Abstract][Full Text] [Related]
15. Photo-Fenton-like degradation of antibiotics by inverse opal WO Tian Y; Jia N; Zhou L; Lei J; Wang L; Zhang J; Liu Y Chemosphere; 2022 Feb; 288(Pt 3):132627. PubMed ID: 34678345 [TBL] [Abstract][Full Text] [Related]
16. Magnetic porphyrin-based metal organic gel for rapid RhB removal and enhanced antibacterial activity by heterogeneous Photo-Fenton reaction under visible light. Gu D; Liu Y; Zhu H; Gan Y; Zhang B; Yang W; Hao J Chemosphere; 2022 Sep; 303(Pt 2):135114. PubMed ID: 35623427 [TBL] [Abstract][Full Text] [Related]
17. Photo-assisted degradation of Rhodamine B by a heterogeneous Fenton-like process: performance and kinetics. Hu X; Li R; Xing Y Environ Technol; 2023 Oct; 44(24):3751-3762. PubMed ID: 35481459 [TBL] [Abstract][Full Text] [Related]
18. Kinetic study of the degradation of rhodamine B using a flow-through UV/electro-Fenton process with the presence of ethylenediaminetetraacetic acid. Zhang Y; Luo G; Wang Q; Zhang Y; Zhou M Chemosphere; 2020 Feb; 240():124929. PubMed ID: 31561158 [TBL] [Abstract][Full Text] [Related]
19. Environmental application of millimetre-scale sponge iron (s-Fe⁰) particles (I): pretreatment of cationic triphenylmethane dyes. Ju Y; Liu X; Li Z; Kang J; Wang X; Zhang Y; Fang J; Dionysiou DD J Hazard Mater; 2015; 283():469-79. PubMed ID: 25464285 [TBL] [Abstract][Full Text] [Related]