These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 27836601)

  • 1. Generation of electrical power under human skin by subdermal solar cell arrays for implantable bioelectronic devices.
    Song K; Han JH; Yang HC; Nam KI; Lee J
    Biosens Bioelectron; 2017 Jun; 92():364-371. PubMed ID: 27836601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of subdermal solar energy harvesting for medical device applications based on worldwide meteorological data.
    Tholl MV; Zurbuchen A; Tanner H; Haeberlin A
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33694336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcutaneous Solar Energy Harvesting for Self-Powered Wireless Implantable Sensor Systems.
    Wu T; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4657-4660. PubMed ID: 30441389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subdermal Flexible Solar Cell Arrays for Powering Medical Electronic Implants.
    Song K; Han JH; Lim T; Kim N; Shin S; Kim J; Choo H; Jeong S; Kim YC; Wang ZL; Lee J
    Adv Healthc Mater; 2016 Jul; 5(13):1572-80. PubMed ID: 27139339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Successful pacing using a batteryless sunlight-powered pacemaker.
    Haeberlin A; Zurbuchen A; Schaerer J; Wagner J; Walpen S; Huber C; Haeberlin H; Fuhrer J; Vogel R
    Europace; 2014 Oct; 16(10):1534-9. PubMed ID: 24916431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The first batteryless, solar-powered cardiac pacemaker.
    Haeberlin A; Zurbuchen A; Walpen S; Schaerer J; Niederhauser T; Huber C; Tanner H; Servatius H; Seiler J; Haeberlin H; Fuhrer J; Vogel R
    Heart Rhythm; 2015 Jun; 12(6):1317-23. PubMed ID: 25744612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output.
    Bereuter L; Williner S; Pianezzi F; Bissig B; Buecheler S; Burger J; Vogel R; Zurbuchen A; Haeberlin A
    Ann Biomed Eng; 2017 May; 45(5):1172-1180. PubMed ID: 28050727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor.
    Li Y; Song Y; Kong X; Li M; Zhao Y; Hao Q; Gao T
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27626422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin film rechargeable lithium batteries for implantable devices.
    Bates JB; Dudney NJ
    ASAIO J; 1997; 43(5):M644-7. PubMed ID: 9360124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantable Energy-Harvesting Devices.
    Shi B; Li Z; Fan Y
    Adv Mater; 2018 Nov; 30(44):e1801511. PubMed ID: 30043422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A photovoltaic-driven and energy-autonomous CMOS implantable sensor.
    Ayazian S; Akhavan VA; Soenen E; Hassibi A
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):336-43. PubMed ID: 23853178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wireless near-infrared energy system for medical implants.
    Murakawa K; Kobayashi M; Nakamura O; Kawata S
    IEEE Eng Med Biol Mag; 1999; 18(6):70-2. PubMed ID: 10576076
    [No Abstract]   [Full Text] [Related]  

  • 13. Diamond encapsulated photovoltaics for transdermal power delivery.
    Ahnood A; Fox KE; Apollo NV; Lohrmann A; Garrett DJ; Nayagam DA; Karle T; Stacey A; Abberton KM; Morrison WA; Blakers A; Prawer S
    Biosens Bioelectron; 2016 Mar; 77():589-97. PubMed ID: 26476599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A solar cell system for extension of battery run time in a moving actuator total artificial heart.
    Ahn JM; Kim WE; Choi SW; Min BG; Kim WG
    ASAIO J; 1997; 43(5):M673-6. PubMed ID: 9360131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft, thin skin-mounted power management systems and their use in wireless thermography.
    Lee JW; Xu R; Lee S; Jang KI; Yang Y; Banks A; Yu KJ; Kim J; Xu S; Ma S; Jang SW; Won P; Li Y; Kim BH; Choe JY; Huh S; Kwon YH; Huang Y; Paik U; Rogers JA
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6131-6. PubMed ID: 27185907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.
    Sahara G; Hijikata W; Tomioka K; Shinshi T
    Proc Inst Mech Eng H; 2016 Jun; 230(6):569-78. PubMed ID: 27006422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental study of an electric power transmission system for implanted medical devices using magnetic and ultrasonic energy.
    Suzuki SN; Katane T; Saito O
    J Artif Organs; 2003; 6(2):145-8. PubMed ID: 14598116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microbial fuel cell as power supply for implantable medical devices.
    Han Y; Yu C; Liu H
    Biosens Bioelectron; 2010 May; 25(9):2156-60. PubMed ID: 20299200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible wearable sensor nodes with solar energy harvesting.
    Taiyang Wu ; Arefin MS; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3273-3276. PubMed ID: 29060596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power quality issues and interactions in modern electrical distribution systems.
    Moss TP
    Healthc Facil Manag Ser; 1996 Dec; ():1-6. PubMed ID: 10162570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.