BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 27836616)

  • 1. Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications.
    Piccinini E; Bliem C; Reiner-Rozman C; Battaglini F; Azzaroni O; Knoll W
    Biosens Bioelectron; 2017 Jun; 92():661-667. PubMed ID: 27836616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme Multilayers on Graphene-Based FETs for Biosensing Applications.
    Bliem C; Piccinini E; Knoll W; Azzaroni O
    Methods Enzymol; 2018; 609():23-46. PubMed ID: 30244792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascading reaction of arginase and urease on a graphene-based FET for ultrasensitive, real-time detection of arginine.
    Berninger T; Bliem C; Piccinini E; Azzaroni O; Knoll W
    Biosens Bioelectron; 2018 Sep; 115():104-110. PubMed ID: 29803864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creation of reduced graphene oxide based field effect transistors and their utilization in the detection and discrimination of nucleoside triphosphates.
    Yu C; Chang X; Liu J; Ding L; Peng J; Fang Y
    ACS Appl Mater Interfaces; 2015 May; 7(20):10718-26. PubMed ID: 25946520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylcholine biosensor based on the electrochemical functionalization of graphene field-effect transistors.
    Fenoy GE; Marmisollé WA; Azzaroni O; Knoll W
    Biosens Bioelectron; 2020 Jan; 148():111796. PubMed ID: 31665672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical and biological sensing applications based on graphene field-effect transistors.
    Ohno Y; Maehashi K; Matsumoto K
    Biosens Bioelectron; 2010 Dec; 26(4):1727-30. PubMed ID: 20800470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Amino-Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors.
    Fenoy GE; Piccinini E; Knoll W; Marmisollé WA; Azzaroni O
    Anal Chem; 2022 Oct; 94(40):13820-13828. PubMed ID: 36170602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors.
    Melzer K; Bhatt VD; Jaworska E; Mittermeier R; Maksymiuk K; Michalska A; Lugli P
    Biosens Bioelectron; 2016 Oct; 84():7-14. PubMed ID: 27140308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors.
    Sohn IY; Kim DJ; Jung JH; Yoon OJ; Thanh TN; Quang TT; Lee NE
    Biosens Bioelectron; 2013 Jul; 45():70-6. PubMed ID: 23454740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor.
    Jakhar S; Pundir CS
    Biosens Bioelectron; 2018 Feb; 100():242-250. PubMed ID: 28926823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic tuning of biosensing response through electrostatic or hydrophobic enzyme-graphene oxide interactions.
    Baptista-Pires L; Pérez-López B; Mayorga-Martinez CC; Morales-Narváez E; Domingo N; Esplandiu MJ; Alzina F; Sotomayor-Torres CM; Merkoçi A
    Biosens Bioelectron; 2014 Nov; 61():655-62. PubMed ID: 24976046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications.
    He Q; Sudibya HG; Yin Z; Wu S; Li H; Boey F; Huang W; Chen P; Zhang H
    ACS Nano; 2010 Jun; 4(6):3201-8. PubMed ID: 20441213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent, flexible, all-reduced graphene oxide thin film transistors.
    He Q; Wu S; Gao S; Cao X; Yin Z; Li H; Chen P; Zhang H
    ACS Nano; 2011 Jun; 5(6):5038-44. PubMed ID: 21524119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Optimal conditions for the functioning of a urease-based biosensor and pH-sensitive field transistors. Determination of urea in solution].
    Bubriak OA; Soldatkin AP; Starodub NF; El'skaia AV; Shul'ga AA; Strikha VI
    Ukr Biokhim Zh (1978); 1993; 65(1):110-3. PubMed ID: 8351735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor.
    Lei YM; Xiao MM; Li YT; Xu L; Zhang H; Zhang ZY; Zhang GJ
    Biosens Bioelectron; 2017 May; 91():1-7. PubMed ID: 27984705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple sonochemical approach to fabricate a urea biosensor based on zinc phthalocyanine/graphene oxide/urease bioelectrode.
    Selvarajan S; Suganthi A; Rajarajan M
    Ultrason Sonochem; 2018 Apr; 42():183-192. PubMed ID: 29429660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the effect of ionic screening with protein-decorated graphene transistors.
    Ping J; Xi J; Saven JG; Liu R; Johnson ATC
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):689-692. PubMed ID: 26626969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-based liquid-gated field effect transistor for biosensing: Theory and experiments.
    Reiner-Rozman C; Larisika M; Nowak C; Knoll W
    Biosens Bioelectron; 2015 Aug; 70():21-7. PubMed ID: 25791463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A potentiometric sensor designed on the basis of urease immobilized in polyelectrolyte microcapsules].
    Ternovskiĭ VI; Chernokhvostov IuV; Fomkina MG; Montrel' MM
    Biofizika; 2007; 52(5):825-9. PubMed ID: 17969915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs.
    Soldatkin AP; Montoriol J; Sant W; Martelet C; Jaffrezic-Renault N
    Biosens Bioelectron; 2003 Nov; 19(2):131-5. PubMed ID: 14568713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.