BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 27836656)

  • 1. Investigation of different cross-linking approaches on 3D gelatin scaffolds for tissue engineering application: A comparative analysis.
    Shankar KG; Gostynska N; Montesi M; Panseri S; Sprio S; Kon E; Marcacci M; Tampieri A; Sandri M
    Int J Biol Macromol; 2017 Feb; 95():1199-1209. PubMed ID: 27836656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications.
    Zhang Y; Wang QS; Yan K; Qi Y; Wang GF; Cui YL
    J Biomed Mater Res A; 2016 Aug; 104(8):1863-70. PubMed ID: 27027247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How can genipin assist gelatin/carbohydrate chitosan scaffolds to act as replacements of load-bearing soft tissues?
    Sarem M; Moztarzadeh F; Mozafari M
    Carbohydr Polym; 2013 Apr; 93(2):635-43. PubMed ID: 23499106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous hydrogels from shark skin collagen crosslinked under dense carbon dioxide atmosphere.
    Fernandes-Silva S; Moreira-Silva J; Silva TH; Perez-Martin RI; Sotelo CG; Mano JF; Duarte AR; Reis RL
    Macromol Biosci; 2013 Nov; 13(11):1621-31. PubMed ID: 24039034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold.
    Poursamar SA; Lehner AN; Azami M; Ebrahimi-Barough S; Samadikuchaksaraei A; Antunes AP
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():1-9. PubMed ID: 27040189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.
    Olami H; Zilberman M
    J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering.
    Li Y; Liu Y; Xun X; Zhang W; Xu Y; Gu D
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36359-36370. PubMed ID: 31509372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of photo-crosslinked chitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture.
    Zhao P; Deng C; Xu H; Tang X; He H; Lin C; Su J
    Biomed Mater Eng; 2014; 24(1):633-41. PubMed ID: 24211948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering.
    Saghebasl S; Davaran S; Rahbarghazi R; Montaseri A; Salehi R; Ramazani A
    J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual Function of Glucosamine in Gelatin/Hyaluronic Acid Cryogel to Modulate Scaffold Mechanical Properties and to Maintain Chondrogenic Phenotype for Cartilage Tissue Engineering.
    Chen CH; Kuo CY; Wang YJ; Chen JP
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27886065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-electrospun gelatin-poly(L-lactic acid) scaffolds: modulation of mechanical properties and chondrocyte response as a function of composition.
    Torricelli P; Gioffrè M; Fiorani A; Panzavolta S; Gualandi C; Fini M; Focarete ML; Bigi A
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():130-8. PubMed ID: 24433895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent.
    Tonda-Turo C; Gentile P; Saracino S; Chiono V; Nandagiri VK; Muzio G; Canuto RA; Ciardelli G
    Int J Biol Macromol; 2011 Nov; 49(4):700-6. PubMed ID: 21767562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds.
    Gomes SR; Rodrigues G; Martins GG; Henriques CM; Silva JC
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1219-27. PubMed ID: 23827564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glyoxal cross-linking of solubilized extracellular matrix to produce highly porous, elastic, and chondro-permissive scaffolds for orthopedic tissue engineering.
    Browe DC; Mahon OR; Díaz-Payno PJ; Cassidy N; Dudurych I; Dunne A; Buckley CT; Kelly DJ
    J Biomed Mater Res A; 2019 Oct; 107(10):2222-2234. PubMed ID: 31116910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications.
    Yan LP; Wang YJ; Ren L; Wu G; Caridade SG; Fan JB; Wang LY; Ji PH; Oliveira JM; Oliveira JT; Mano JF; Reis RL
    J Biomed Mater Res A; 2010 Nov; 95(2):465-75. PubMed ID: 20648541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PAMAM (generation 4) incorporated gelatin 3D matrix as an improved dermal substitute for skin tissue engineering.
    Maji S; Agarwal T; Maiti TK
    Colloids Surf B Biointerfaces; 2017 Jul; 155():128-134. PubMed ID: 28419941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Storage stability of electrospun pure gelatin stabilized with EDC/Sulfo-NHS.
    Ghassemi Z; Slaughter G
    Biopolymers; 2018 Sep; 109(9):e23232. PubMed ID: 30191551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration.
    Balakrishnan B; Joshi N; Jayakrishnan A; Banerjee R
    Acta Biomater; 2014 Aug; 10(8):3650-63. PubMed ID: 24811827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation.
    Han LH; Lai JH; Yu S; Yang F
    Biomaterials; 2013 Jun; 34(17):4251-8. PubMed ID: 23489920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.