These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 27836940)

  • 1. Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism.
    Jin BJ; Smith AJ; Verkman AS
    J Gen Physiol; 2016 Dec; 148(6):489-501. PubMed ID: 27836940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The "glymphatic" mechanism for solute clearance in Alzheimer's disease: game changer or unproven speculation?
    Smith AJ; Verkman AS
    FASEB J; 2018 Feb; 32(2):543-551. PubMed ID: 29101220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma.
    Smith AJ; Yao X; Dix JA; Jin BJ; Verkman AS
    Elife; 2017 Aug; 6():. PubMed ID: 28826498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aquaporin-4-dependent K(+) and water transport modeled in brain extracellular space following neuroexcitation.
    Jin BJ; Zhang H; Binder DK; Verkman AS
    J Gen Physiol; 2013 Jan; 141(1):119-32. PubMed ID: 23277478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsatile flow drivers in brain parenchyma and perivascular spaces: a resistance network model study.
    Rey J; Sarntinoranont M
    Fluids Barriers CNS; 2018 Jul; 15(1):20. PubMed ID: 30012159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is bulk flow plausible in perivascular, paravascular and paravenous channels?
    Faghih MM; Sharp MK
    Fluids Barriers CNS; 2018 Jun; 15(1):17. PubMed ID: 29903035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the extracellular diffusion of antibodies in brain using in vivo integrative optical imaging and ex vivo fluorescence imaging.
    Wolak DJ; Pizzo ME; Thorne RG
    J Control Release; 2015 Jan; 197():78-86. PubMed ID: 25449807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system?
    Abbott NJ; Pizzo ME; Preston JE; Janigro D; Thorne RG
    Acta Neuropathol; 2018 Mar; 135(3):387-407. PubMed ID: 29428972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncertainty quantification of parenchymal tracer distribution using random diffusion and convective velocity fields.
    Croci M; Vinje V; Rognes ME
    Fluids Barriers CNS; 2019 Sep; 16(1):32. PubMed ID: 31564250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is solute movement within the extracellular spaces of brain gray matter brought about primarily by diffusion or flow? A commentary on "Analysis of convective and diffusive transport in the brain interstitium" Fluids and Barriers of the CNS (2019) 16:6 by L. Ray, J.J. Iliff and J.J. Heys.
    Hladky SB; Barrand MA
    Fluids Barriers CNS; 2019 Jul; 16(1):24. PubMed ID: 31299992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random-walk model of diffusion in three dimensions in brain extracellular space: comparison with microfiberoptic photobleaching measurements.
    Jin S; Zador Z; Verkman AS
    Biophys J; 2008 Aug; 95(4):1785-94. PubMed ID: 18469079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glymphatic solute transport does not require bulk flow.
    Asgari M; de ZĂ©licourt D; Kurtcuoglu V
    Sci Rep; 2016 Dec; 6():38635. PubMed ID: 27929105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arterial vasodilation drives convective fluid flow in the brain: a poroelastic model.
    Kedarasetti RT; Drew PJ; Costanzo F
    Fluids Barriers CNS; 2022 May; 19(1):34. PubMed ID: 35570287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glymphatic hypothesis: the theory and the evidence.
    Hladky SB; Barrand MA
    Fluids Barriers CNS; 2022 Feb; 19(1):9. PubMed ID: 35115036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimates of the permeability of extra-cellular pathways through the astrocyte endfoot sheath.
    Koch T; Vinje V; Mardal KA
    Fluids Barriers CNS; 2023 Mar; 20(1):20. PubMed ID: 36941607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modelling of fluid and solute transport in the brain.
    Martinac AD; Bilston LE
    Biomech Model Mechanobiol; 2020 Jun; 19(3):781-800. PubMed ID: 31720888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaps in the wall of a perivascular space act as valves to produce a directed flow of cerebrospinal fluid: a hoop-stress model.
    Gan Y; Thomas JH; Kelley DH
    J R Soc Interface; 2024 Apr; 21(213):20230659. PubMed ID: 38565158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase offset between arterial pulsations and subarachnoid space pressure fluctuations are unlikely to drive periarterial cerebrospinal fluid flow.
    Martinac AD; Fletcher DF; Bilston LE
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1751-1766. PubMed ID: 34275063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid flow and convective transport of solutes within the intervertebral disc.
    Ferguson SJ; Ito K; Nolte LP
    J Biomech; 2004 Feb; 37(2):213-21. PubMed ID: 14706324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of convective and diffusive transport in the brain interstitium.
    Ray L; Iliff JJ; Heys JJ
    Fluids Barriers CNS; 2019 Mar; 16(1):6. PubMed ID: 30836968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.