BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 27837218)

  • 1. Detailed molecular characterization of a novel IDS exonic mutation associated with multiple pseudoexon activation.
    Grodecká L; Kováčová T; Kramárek M; Seneca S; Stouffs K; De Laet C; Majer F; Kršjaková T; Hujová P; Hrnčířová K; Souček P; Lissens W; Buratti E; Freiberger T
    J Mol Med (Berl); 2017 Mar; 95(3):299-309. PubMed ID: 27837218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3' splice site mutation of IDS gene in a Chinese family with mucopolysaccharidosis type II.
    Jin P; Hao JW; Chen K; Dong CS; Yang YB; Mo ZH
    Gene; 2013 Oct; 528(2):236-40. PubMed ID: 23867855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of Portuguese patients with mucopolysaccharidosis type II shows evidence that the IDS gene is prone to splicing mutations.
    Alves S; Mangas M; Prata MJ; Ribeiro G; Lopes L; Ribeiro H; Pinto-Basto J; Lima MR; Lacerda L
    J Inherit Metab Dis; 2006 Dec; 29(6):743-54. PubMed ID: 17063374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel single-base substitution (380C>T) that activates a 5-base downstream cryptic splice-acceptor site within exon 5 in almost all transcripts in the human mitochondrial acetoacetyl-CoA thiolase gene.
    Nakamura K; Fukao T; Perez-Cerda C; Luque C; Song XQ; Naiki Y; Kohno Y; Ugarte M; Kondo N
    Mol Genet Metab; 2001 Feb; 72(2):115-21. PubMed ID: 11161837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudoexon activation in disease by non-splice site deep intronic sequence variation - wild type pseudoexons constitute high-risk sites in the human genome.
    Petersen USS; Doktor TK; Andresen BS
    Hum Mutat; 2022 Feb; 43(2):103-127. PubMed ID: 34837434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple splicing defects in an intronic false exon.
    Sun H; Chasin LA
    Mol Cell Biol; 2000 Sep; 20(17):6414-25. PubMed ID: 10938119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the IDS gene in 38 patients with Hunter syndrome: the c.879G>A (p.Gln293Gln) synonymous variation in a female create exonic splicing.
    Zhang H; Li J; Zhang X; Wang Y; Qiu W; Ye J; Han L; Gao X; Gu X
    PLoS One; 2011; 6(8):e22951. PubMed ID: 21829674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5' splice-site disruption.
    Wimmer K; Roca X; Beiglböck H; Callens T; Etzler J; Rao AR; Krainer AR; Fonatsch C; Messiaen L
    Hum Mutat; 2007 Jun; 28(6):599-612. PubMed ID: 17311297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular diagnosis of mucopolysaccharidosis type II (Hunter syndrome) by automated sequencing and computer-assisted interpretation: toward mutation mapping of the iduronate-2-sulfatase gene.
    Jonsson JJ; Aronovich EL; Braun SE; Whitley CB
    Am J Hum Genet; 1995 Mar; 56(3):597-607. PubMed ID: 7887413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine characterization of the recurrent c.1584+18672A>G deep-intronic mutation in the cystic fibrosis transmembrane conductance regulator gene.
    Costantino L; Rusconi D; Soldà G; Seia M; Paracchini V; Porcaro L; Asselta R; Colombo C; Duga S
    Am J Respir Cell Mol Biol; 2013 May; 48(5):619-25. PubMed ID: 23349053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple cryptic splice sites can be activated by IDS point mutations generating misspliced transcripts.
    Lualdi S; Pittis MG; Regis S; Parini R; Allegri AE; Furlan F; Bembi B; Filocamo M
    J Mol Med (Berl); 2006 Aug; 84(8):692-700. PubMed ID: 16699754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The deep intronic c.903+469T>C mutation in the MTRR gene creates an SF2/ASF binding exonic splicing enhancer, which leads to pseudoexon activation and causes the cblE type of homocystinuria.
    Homolova K; Zavadakova P; Doktor TK; Schroeder LD; Kozich V; Andresen BS
    Hum Mutat; 2010 Apr; 31(4):437-44. PubMed ID: 20120036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition.
    Královicová J; Vorechovsky I
    Nucleic Acids Res; 2007; 35(19):6399-413. PubMed ID: 17881373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of iduronate-2-sulphatase gene mutations in patients with mucopolysaccharidosis type II (Hunter syndrome).
    Li P; Bellows AB; Thompson JN
    J Med Genet; 1999 Jan; 36(1):21-7. PubMed ID: 9950361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational analysis of splicing errors and mutations in human transcripts.
    Kurmangaliyev YZ; Gelfand MS
    BMC Genomics; 2008 Jan; 9():13. PubMed ID: 18194514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Splice-shifting oligonucleotide (SSO) mediated blocking of an exonic splicing enhancer (ESE) created by the prevalent c.903+469T>C MTRR mutation corrects splicing and restores enzyme activity in patient cells.
    Palhais B; Præstegaard VS; Sabaratnam R; Doktor TK; Lutz S; Burda P; Suormala T; Baumgartner M; Fowler B; Bruun GH; Andersen HS; Kožich V; Andresen BS
    Nucleic Acids Res; 2015 May; 43(9):4627-39. PubMed ID: 25878036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The prevalent deep intronic c. 639+919 G>A GLA mutation causes pseudoexon activation and Fabry disease by abolishing the binding of hnRNPA1 and hnRNP A2/B1 to a splicing silencer.
    Palhais B; Dembic M; Sabaratnam R; Nielsen KS; Doktor TK; Bruun GH; Andresen BS
    Mol Genet Metab; 2016 Nov; 119(3):258-269. PubMed ID: 27595546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Background splicing as a predictor of aberrant splicing in genetic disease.
    D A; Y L; R S; H D; E B; Rm W; I V; L C; N J D
    RNA Biol; 2022; 19(1):256-265. PubMed ID: 35188075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disease-causing mutations improving the branch site and polypyrimidine tract: pseudoexon activation of LINE-2 and antisense Alu lacking the poly(T)-tail.
    Meili D; Kralovicova J; Zagalak J; Bonafé L; Fiori L; Blau N; Thöny B; Vorechovsky I
    Hum Mutat; 2009 May; 30(5):823-31. PubMed ID: 19280650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G-->A mutations in introns of the dystrophin gene.
    Habara Y; Takeshima Y; Awano H; Okizuka Y; Zhang Z; Saiki K; Yagi M; Matsuo M
    J Med Genet; 2009 Aug; 46(8):542-7. PubMed ID: 19001018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.