These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 27837360)
1. A two-muscle, continuum-mechanical forward simulation of the upper limb. Röhrle O; Sprenger M; Schmitt S Biomech Model Mechanobiol; 2017 Jun; 16(3):743-762. PubMed ID: 27837360 [TBL] [Abstract][Full Text] [Related]
2. Gradient-based optimization with B-splines on sparse grids for solving forward-dynamics simulations of three-dimensional, continuum-mechanical musculoskeletal system models. Valentin J; Sprenger M; Pflüger D; Röhrle O Int J Numer Method Biomed Eng; 2018 May; 34(5):e2965. PubMed ID: 29427559 [TBL] [Abstract][Full Text] [Related]
3. Determining a musculoskeletal system's pre-stretched state using continuum-mechanical forward modelling and joint range optimization. Avci O; Röhrle O Biomech Model Mechanobiol; 2024 Jun; 23(3):1031-1053. PubMed ID: 38619712 [TBL] [Abstract][Full Text] [Related]
4. An EMG-driven model of the upper extremity and estimation of long head biceps force. Langenderfer J; LaScalza S; Mell A; Carpenter JE; Kuhn JE; Hughes RE Comput Biol Med; 2005 Jan; 35(1):25-39. PubMed ID: 15567350 [TBL] [Abstract][Full Text] [Related]
5. Musculotendon lengths and moment arms for a three-dimensional upper-extremity model. Rankin JW; Neptune RR J Biomech; 2012 Jun; 45(9):1739-44. PubMed ID: 22520587 [TBL] [Abstract][Full Text] [Related]
6. Fast Forward-Dynamics Tracking Simulation: Application to Upper Limb and Shoulder Modeling. Sagl B; Dickerson CR; Stavness I IEEE Trans Biomed Eng; 2019 Feb; 66(2):335-342. PubMed ID: 29993500 [TBL] [Abstract][Full Text] [Related]
7. Virtual musculo-skeletal model for the biomechanical analysis of the upper limb. Pennestrì E; Stefanelli R; Valentini PP; Vita L J Biomech; 2007; 40(6):1350-61. PubMed ID: 16824531 [TBL] [Abstract][Full Text] [Related]
8. Musculoskeletal model of the upper limb based on the visible human male dataset. Garner BA; Pandy MG Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):93-126. PubMed ID: 11264863 [TBL] [Abstract][Full Text] [Related]
9. Critical analysis of musculoskeletal modelling complexity in multibody biomechanical models of the upper limb. Quental C; Folgado J; Ambrósio J; Monteiro J Comput Methods Biomech Biomed Engin; 2015; 18(7):749-59. PubMed ID: 24156405 [TBL] [Abstract][Full Text] [Related]
10. Estimation of musculotendon properties in the human upper limb. Garner BA; Pandy MG Ann Biomed Eng; 2003 Feb; 31(2):207-20. PubMed ID: 12627828 [TBL] [Abstract][Full Text] [Related]
11. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Holzbaur KR; Murray WM; Delp SL Ann Biomed Eng; 2005 Jun; 33(6):829-40. PubMed ID: 16078622 [TBL] [Abstract][Full Text] [Related]
12. Muscle-driven finite element simulation of human foot movements. Spyrou LA; Aravas N Comput Methods Biomech Biomed Engin; 2012; 15(9):925-34. PubMed ID: 21711216 [TBL] [Abstract][Full Text] [Related]
13. Fibre operating lengths of human lower limb muscles during walking. Arnold EM; Delp SL Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1530-9. PubMed ID: 21502124 [TBL] [Abstract][Full Text] [Related]
14. An Efficient Modelling-Simulation-Analysis Workflow to Investigate Stump-Socket Interaction Using Patient-Specific, Three-Dimensional, Continuum-Mechanical, Finite Element Residual Limb Models. Ramasamy E; Avci O; Dorow B; Chong SY; Gizzi L; Steidle G; Schick F; Röhrle O Front Bioeng Biotechnol; 2018; 6():126. PubMed ID: 30283777 [TBL] [Abstract][Full Text] [Related]
15. Human skeletal muscle behavior in vivo: Finite element implementation, experiment, and passive mechanical characterization. Clemen CB; Benderoth GEK; Schmidt A; Hübner F; Vogl TJ; Silber G J Mech Behav Biomed Mater; 2017 Jan; 65():679-687. PubMed ID: 27743943 [TBL] [Abstract][Full Text] [Related]
16. A model of the flexion-extension motion in the elbow joint some problems concerning muscle forces modelling and computation. Raikova R J Biomech; 1996 Jun; 29(6):763-72. PubMed ID: 9147973 [TBL] [Abstract][Full Text] [Related]
17. Muscle moment-arms: a key element in muscle-force estimation. Ingram D; Engelhardt C; Farron A; Terrier A; Müllhaupt P Comput Methods Biomech Biomed Engin; 2015; 18(5):506-13. PubMed ID: 23998280 [TBL] [Abstract][Full Text] [Related]
18. A forward-muscular inverse-skeletal dynamics framework for human musculoskeletal simulations. S Shourijeh M; Smale KB; Potvin BM; Benoit DL J Biomech; 2016 Jun; 49(9):1718-1723. PubMed ID: 27106173 [TBL] [Abstract][Full Text] [Related]
19. A mass-flowing muscle model with shape restrictive soft tissues: correlation with sonoelastography. Guo J; Sun Y; Hao Y; Cui L; Ren G Biomech Model Mechanobiol; 2020 Jun; 19(3):911-926. PubMed ID: 31853723 [TBL] [Abstract][Full Text] [Related]
20. Estimation of muscle forces in gait using a simulation of the electromyographic activity and numerical optimization. Ravera EP; Crespo MJ; Braidot AA Comput Methods Biomech Biomed Engin; 2016; 19(1):1-12. PubMed ID: 25408069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]