These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2783782)

  • 1. Nonanesthetic alcohols dissolve in synaptic membranes without perturbing their lipids.
    Miller KW; Firestone LL; Alifimoff JK; Streicher P
    Proc Natl Acad Sci U S A; 1989 Feb; 86(3):1084-7. PubMed ID: 2783782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anesthetic cutoff in cycloalkanemethanols. A test of current theories.
    Raines DE; Korten SE; Hill AG; Miller KW
    Anesthesiology; 1993 May; 78(5):918-27. PubMed ID: 8489064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does general anesthetic-induced desensitization of the Torpedo acetylcholine receptor correlate with lipid disordering?
    Firestone LL; Alifimoff JK; Miller KW
    Mol Pharmacol; 1994 Sep; 46(3):508-15. PubMed ID: 7935332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actions of general anesthetics on acetylcholine receptor-rich membranes from Torpedo californica.
    Firestone LL; Sauter JF; Braswell LM; Miller KW
    Anesthesiology; 1986 Jun; 64(6):694-702. PubMed ID: 3717633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythrocyte membrane expansion due to the volatile anesthetics, the 1-alkanols, and benzyl alcohol.
    Bull MH; Brailsford JD; Bull BS
    Anesthesiology; 1982 Nov; 57(5):399-403. PubMed ID: 7137619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction of n-alkanols with lipid bilayer membranes: a 2H-NMR study.
    Westerman PW; Pope JM; Phonphok N; Doane JW; Dubro DW
    Biochim Biophys Acta; 1988 Mar; 939(1):64-78. PubMed ID: 3349082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short chain and long chain alkanols have different sites of action on nicotinic acetylcholine receptor channels from Torpedo.
    Wood SC; Forman SA; Miller KW
    Mol Pharmacol; 1991 Mar; 39(3):332-8. PubMed ID: 1706469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of n-alkanols and cholesterol on the duration and conductance of gramicidin single channels in monoolein bilayers.
    Pope CG; Urban BW; Haydon DA
    Biochim Biophys Acta; 1982 May; 688(1):279-83. PubMed ID: 6178436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioning of long-chain alcohols into lipid bilayers: implications for mechanisms of general anesthesia.
    Franks NP; Lieb WR
    Proc Natl Acad Sci U S A; 1986 Jul; 83(14):5116-20. PubMed ID: 3460084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channel inhibition by alkanols occurs at a binding site on the nicotinic acetylcholine receptor.
    Wood SC; Tonner PH; de Armendi AJ; Bugge B; Miller KW
    Mol Pharmacol; 1995 Jan; 47(1):121-30. PubMed ID: 7530805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conformational model for the action of general anesthetics at the membrane level. II. Experimental observations on the effects of anesthetics on lipid fluidity and lipid protein interactions.
    Lenaz G; Mazzanti L; Curatola G; Bertoli E; Bigi A; Zolese G
    Ital J Biochem; 1978; 27(6):401-30. PubMed ID: 755801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaesthetic potencies of primary alkanols: implications for the molecular dimensions of the anaesthetic site.
    Alifimoff JK; Firestone LL; Miller KW
    Br J Pharmacol; 1989 Jan; 96(1):9-16. PubMed ID: 2784337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of 5-hydroxytryptamine type 2A receptor-induced currents by n-alcohols and anesthetics.
    Minami K; Minami M; Harris RA
    J Pharmacol Exp Ther; 1997 Jun; 281(3):1136-43. PubMed ID: 9190846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and slow interactions of n-alkanols with human 5-HT3A receptors: Implications for anesthetic mechanisms.
    Decker AM; Witten S; Barann M; Urban BW
    Biochim Biophys Acta; 2015 Jul; 1848(7):1524-35. PubMed ID: 25863270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anesthetic potencies of secondary alcohol enantiomers.
    Alifimoff JK; Firestone LL; Miller KW
    Anesthesiology; 1987 Jan; 66(1):55-9. PubMed ID: 3492157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and properties of 3-(2-hydroxyethyl)-3-n-pentyldiazirine, a photoactivable general anesthetic.
    Husain SS; Forman SA; Kloczewiak MA; Addona GH; Olsen RW; Pratt MB; Cohen JB; Miller KW
    J Med Chem; 1999 Aug; 42(17):3300-7. PubMed ID: 10464016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anesthetic diffusion through lipid membranes depends on the protonation rate.
    Pérez-Isidoro R; Sierra-Valdez FJ; Ruiz-Suárez JC
    Sci Rep; 2014 Dec; 4():7534. PubMed ID: 25520016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization at the mouse neuromuscular junction of a submembrane structure in common with Torpedo postsynaptic membranes.
    Sealock R
    J Neurosci; 1982 Jul; 2(7):918-23. PubMed ID: 7097319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1-Alkanols and membranes: a story of attraction.
    Griepernau B; Leis S; Schneider MF; Sikor M; Steppich D; Böckmann RA
    Biochim Biophys Acta; 2007 Nov; 1768(11):2899-913. PubMed ID: 17916322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alcohol effects on rapid kinetics of water transport through lipid membranes and location of the main barrier.
    Inoue T; Kamaya H; Ueda I
    Biochim Biophys Acta; 1985 Apr; 815(1):68-74. PubMed ID: 3986204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.