These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27837998)

  • 1. A mechanistic model of ion-exchange chromatography on polymer fiber stationary phases.
    Winderl J; Hahn T; Hubbuch J
    J Chromatogr A; 2016 Dec; 1475():18-30. PubMed ID: 27837998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of interstitial fraction and load conditions on the dynamic binding capacity of proteins on capillary-channeled polymer fiber columns.
    Wang Z; Marcus RK
    Biotechnol Prog; 2015; 31(1):97-109. PubMed ID: 25378292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of protein separations based on hydrophobic interaction chromatography using polyethylene terephthalate capillary-channeled polymer (C-CP) fiber phases.
    Wang L; Marcus RK
    J Chromatogr A; 2019 Jan; 1585():161-171. PubMed ID: 30502918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and modeling of monolithic stationary phases: application to preparative chromatography.
    Ghose S; Cramer SM
    J Chromatogr A; 2001 Aug; 928(1):13-23. PubMed ID: 11589468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial evaluation of protein throughput and yield characteristics on nylon 6 capillary-channeled polymer (C-CP) fiber stationary phases by frontal analysis.
    Randunu KM; Marcus RK
    Biotechnol Prog; 2013; 29(5):1222-9. PubMed ID: 23804494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Packing characteristics of winged shaped polymer fiber supports for preparative chromatography.
    Winderl J; Spies T; Hubbuch J
    J Chromatogr A; 2018 Jun; 1553():67-80. PubMed ID: 29680743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-Based Investigation on the Mass Transfer and Adsorption Mechanisms of Mono-Pegylated Lysozyme in Ion-Exchange Chromatography.
    Morgenstern J; Wang G; Baumann P; Hubbuch J
    Biotechnol J; 2017 Sep; 12(9):. PubMed ID: 28731571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of analytical protein separation characteristics for three amine-based capillary-channeled polymer (C-CP) stationary phases.
    Jiang L; Marcus RK
    Anal Bioanal Chem; 2016 Feb; 408(5):1373-83. PubMed ID: 26345444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of a novel weak cation exchange/hydrophobic interaction chromatography dual-function polymer-based stationary phase for protein separation using "thiol-ene click chemistry".
    Yang F; Bai Q; Zhao K; Gao D; Tian L
    Anal Bioanal Chem; 2015 Feb; 407(6):1721-34. PubMed ID: 25543148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High throughput screening of fiber-based adsorbents for material and process development.
    Winderl J; Bürkle S; Hubbuch J
    J Chromatogr A; 2021 Sep; 1653():462387. PubMed ID: 34375899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of protein elution rates from preparative ion-exchange adsorbents.
    Angelo JM; Lenhoff AM
    J Chromatogr A; 2016 Apr; 1440():94-104. PubMed ID: 26948763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of complex protein elution behavior in preparative ion exchange processes using a colloidal particle adsorption model.
    Briskot T; Hahn T; Huuk T; Wang G; Kluters S; Studts J; Wittkopp F; Winderl J; Schwan P; Hagemann I; Kaiser K; Trapp A; Stamm SM; Koehn J; Malmquist G; Hubbuch J
    J Chromatogr A; 2021 Sep; 1654():462439. PubMed ID: 34384923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber-based monolithic columns for liquid chromatography.
    Ladisch M; Zhang L
    Anal Bioanal Chem; 2016 Oct; 408(25):6871-83. PubMed ID: 27553948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of surface modification on protein retention in ion-exchange chromatography. Evaluation using different retention models.
    Bruch T; Graalfs H; Jacob L; Frech C
    J Chromatogr A; 2009 Feb; 1216(6):919-26. PubMed ID: 19111307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein adsorption and transport in polymer-functionalized ion-exchangers.
    Lenhoff AM
    J Chromatogr A; 2011 Dec; 1218(49):8748-59. PubMed ID: 21752388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water on hydrophobic surfaces: Mechanistic modeling of hydrophobic interaction chromatography.
    Wang G; Hahn T; Hubbuch J
    J Chromatogr A; 2016 Sep; 1465():71-8. PubMed ID: 27575919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of high capacity, strong cation-exchange fiber based adsorbents.
    Schwellenbach J; Taft F; Villain L; Strube J
    J Chromatogr A; 2016 May; 1447():92-106. PubMed ID: 27106396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates.
    Kluters S; Wittkopp F; Jöhnck M; Frech C
    J Sep Sci; 2016 Feb; 39(4):663-75. PubMed ID: 26549715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new mixed-mode model for interpreting and predicting protein elution during isoelectric chromatofocusing.
    Choy DY; Creagh AL; von Lieres E; Haynes C
    Biotechnol Bioeng; 2014 May; 111(5):925-36. PubMed ID: 24293057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of adsorption isotherm parameters for minor whey proteins by gradient elution preparative liquid chromatography.
    Faraji N; Zhang Y; Ray AK
    J Chromatogr A; 2015 Sep; 1412():67-74. PubMed ID: 26277029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.