BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 27838360)

  • 21. Delayed behavioral effects of postnatal exposure to corticosterone in the zebra finch (Taeniopygia guttata).
    Spencer KA; Verhulst S
    Horm Behav; 2007 Feb; 51(2):273-80. PubMed ID: 17196201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reproductive impairment in zebra finches (Taeniopygia guttata).
    Hoogesteijn AL; DeVoogd TJ; Quimby FW; De Caprio T; Kollias GV
    Environ Toxicol Chem; 2005 Jan; 24(1):219-23. PubMed ID: 15683187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age-specific reproductive success in a long-lived bird: do older parents resist stress better?
    Angelier F; Moe B; Weimerskirch H; Chastel O
    J Anim Ecol; 2007 Nov; 76(6):1181-91. PubMed ID: 17922714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lowering prolactin reduces post-hatch parental care in male and female zebra finches (Taeniopygia guttata).
    Smiley KO; Adkins-Regan E
    Horm Behav; 2018 Feb; 98():103-114. PubMed ID: 29287798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for condition mediated trade-offs between the HPA- and HPG-axes in the wild zebra finch.
    Crino OL; Jensen SM; Buchanan KL; Griffith SC
    Gen Comp Endocrinol; 2018 Apr; 259():189-198. PubMed ID: 29197553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orchestration of avian reproductive effort: an integration of the ultimate and proximate bases for flexibility in clutch size, incubation behaviour, and yolk androgen deposition.
    Sockman KW; Sharp PJ; Schwabl H
    Biol Rev Camb Philos Soc; 2006 Nov; 81(4):629-66. PubMed ID: 17038202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uncoupling clutch size, prolactin, and luteinizing hormone using experimental egg removal.
    Ryan CP; Dawson A; Sharp PJ; Williams TD
    Gen Comp Endocrinol; 2015 Mar; 213():1-8. PubMed ID: 25687742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Red-winged blackbirds (Agelaius phoeniceus) with higher baseline glucocorticoids also invest less in incubation and clutch mass.
    Schoenle LA; Dudek AM; Moore IT; Bonier F
    Horm Behav; 2017 Apr; 90():1-7. PubMed ID: 28189642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of breeding behavior: do energy-demanding periods induce a change in prolactin or corticosterone baseline levels in the common tern (Sterna hirundo)?
    Riechert J; Chastel O; Becker PH
    Physiol Biochem Zool; 2014; 87(3):420-31. PubMed ID: 24769706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water restriction influences intra-pair vocal behavior and the acoustic structure of vocalisations in the opportunistically breeding zebra finch (Taeniopygia guttata).
    Prior NH; Fernandez MSA; Soula HA; Vignal C
    Behav Processes; 2019 May; 162():147-156. PubMed ID: 30825505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Food, stress, and circulating testosterone: Cue integration by the testes, not the brain, in male zebra finches (Taeniopygia guttata).
    Lynn SE; Perfito N; Guardado D; Bentley GE
    Gen Comp Endocrinol; 2015 May; 215():1-9. PubMed ID: 25849310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Should I stay or should I go? Hormonal control of nest abandonment in a long-lived bird, the Adélie penguin.
    Spée M; Beaulieu M; Dervaux A; Chastel O; Le Maho Y; Raclot T
    Horm Behav; 2010 Nov; 58(5):762-8. PubMed ID: 20691185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small increases in corticosterone before the breeding season increase parental investment but not fitness in a wild passerine bird.
    Ouyang JQ; Muturi M; Quetting M; Hau M
    Horm Behav; 2013 May; 63(5):776-81. PubMed ID: 23523741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mercury alters initiation and construction of nests by zebra finches, but not incubation or provisioning behaviors.
    Chin SY; Hopkins WA; Cristol DA
    Ecotoxicology; 2017 Nov; 26(9):1271-1283. PubMed ID: 29022240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trading up: the fitness consequences of divorce in monogamous birds.
    Culina A; Radersma R; Sheldon BC
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1015-34. PubMed ID: 25308164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Behavioral and adrenocortical responses to mate separation and reunion in the zebra finch.
    Remage-Healey L; Adkins-Regan E; Romero LM
    Horm Behav; 2003 Jan; 43(1):108-14. PubMed ID: 12614640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maternal glucocorticoid levels during incubation predict breeding success, but not reproductive investment, in a free-ranging bird.
    Fischer D; Marrotte RR; Chin EH; Coulson S; Burness G
    Biol Open; 2020 Oct; 9(10):. PubMed ID: 33077551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maternal developmental stress reduces reproductive success of female offspring in zebra finches.
    Naguib M; Nemitz A; Gil D
    Proc Biol Sci; 2006 Aug; 273(1596):1901-5. PubMed ID: 16822750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental manipulation of maternal corticosterone: Hormone transfer to the yolk in the zebra finch Taeniopygia guttata.
    Miltiadous A; Buchanan KL
    Gen Comp Endocrinol; 2021 Nov; 313():113898. PubMed ID: 34492223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extra-pair mating in a socially monogamous and paternal mouth-brooding cardinalfish.
    Rueger T; Harrison HB; Gardiner NM; Berumen ML; Jones GP
    Mol Ecol; 2019 May; 28(10):2625-2635. PubMed ID: 30985980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.