These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 27838454)

  • 21. Analysis of plant expression profiles revealed that aphid attack triggered dynamic defense responses in sorghum plant.
    Huang Y; Huang J
    Front Genet; 2023; 14():1194273. PubMed ID: 37655065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of sugarcane aphid herbivory on transcriptional responses of resistant and susceptible sorghum.
    Kiani M; Szczepaniec A
    BMC Genomics; 2018 Oct; 19(1):774. PubMed ID: 30367619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioinformatic prediction, deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid, Acyrthosiphon pisum.
    Legeai F; Rizk G; Walsh T; Edwards O; Gordon K; Lavenier D; Leterme N; Méreau A; Nicolas J; Tagu D; Jaubert-Possamai S
    BMC Genomics; 2010 May; 11():281. PubMed ID: 20444247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elevated production of reactive oxygen species is related to host plant resistance to sugarcane aphid in sorghum.
    Pant S; Huang Y
    Plant Signal Behav; 2021 Feb; 16(2):1849523. PubMed ID: 33270502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of microRNAs and their targets in wild barley (Hordeum vulgare subsp. spontaneum) using deep sequencing.
    Deng P; Bian J; Yue H; Feng K; Wang M; Du X; Weining S; Nie X
    Genome; 2016 May; 59(5):339-48. PubMed ID: 27100818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sorghum cuticular waxes influence host plant selection by aphids.
    Cardona JB; Grover S; Busta L; Sattler SE; Louis J
    Planta; 2022 Dec; 257(1):22. PubMed ID: 36538118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mapping of QTLs for resistance to the greenbug Schizaphis graminum (Rondani) in Sorghum bicolor (Moench).
    Wu Y; Huang Y
    Theor Appl Genet; 2008 Jun; 117(1):117-24. PubMed ID: 18414829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant-Mediated Interactions between Two Cereal Aphid Species: Promotion of Aphid Performance and Attraction of More Parasitoids by Infestation of Wheat with Phytotoxic Aphid Schizaphis graminum.
    Zhang Y; Fan J; Fu Y; Francis F; Chen J
    J Agric Food Chem; 2019 Mar; 67(10):2763-2773. PubMed ID: 30790517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of Planting Date on Melanaphis sacchari (Hemiptera: Aphididae) Population Dynamics and Grain Sorghum Yield.
    Seiter NJ; Miskelley AD; Lorenz GM; Joshi NK; Studebaker GE; Kelley JP
    J Econ Entomol; 2019 Dec; 112(6):2731-2736. PubMed ID: 31504628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In silico analysis of putative miRNAs and their target genes in sorghum (Sorghum bicolor).
    Ram G; Sharma AD
    Int J Bioinform Res Appl; 2013; 9(4):349-64. PubMed ID: 23797994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MicroRNA Expression Profile during Aphid Feeding in Chrysanthemum (Chrysanthemum morifolium).
    Xia X; Shao Y; Jiang J; Du X; Sheng L; Chen F; Fang W; Guan Z; Chen S
    PLoS One; 2015; 10(12):e0143720. PubMed ID: 26650759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biotypic diversity in greenbug (Hemiptera: Aphididae): characterizing new virulence and host associations.
    Burd JD; Porter DR
    J Econ Entomol; 2006 Jun; 99(3):959-65. PubMed ID: 16813337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant Silicon Amendment Does Not Reduce Population Growth of Schizaphis graminum or Host Quality for the Parasitoid Lysiphlebus testaceipes.
    Sampaio MV; Franco GM; Lima DT; Oliveira ARC; Silva PF; Santos ALZ; Resende AVM; Santos FAA; Girão LVC
    Neotrop Entomol; 2020 Oct; 49(5):745-757. PubMed ID: 32445112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and characterization of microRNAs from barley (Hordeum vulgare L.) by high-throughput sequencing.
    Lv S; Nie X; Wang L; Du X; Biradar SS; Jia X; Weining S
    Int J Mol Sci; 2012; 13(3):2973-2984. PubMed ID: 22489137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feeding by the aphid Sipha flava produces a reddish spot on leaves of Sorghum halepense: an induced defense?
    Costa-Arbulú C; Gianoli E; Gonzáles WL; Niemeyer HM
    J Chem Ecol; 2001 Feb; 27(2):273-83. PubMed ID: 14768815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The salivary effector protein Sg2204 in the greenbug Schizaphis graminum suppresses wheat defence and is essential for enabling aphid feeding on host plants.
    Zhang Y; Liu X; Francis F; Xie H; Fan J; Wang Q; Liu H; Sun Y; Chen J
    Plant Biotechnol J; 2022 Nov; 20(11):2187-2201. PubMed ID: 35984895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of small RNA in Aphis gossypii and its potential role in the resistance interaction with melon.
    Sattar S; Addo-Quaye C; Song Y; Anstead JA; Sunkar R; Thompson GA
    PLoS One; 2012; 7(11):e48579. PubMed ID: 23173035
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental Host and Vector Ranges of the Emerging Maize Yellow Mosaic Polerovirus.
    Ohlson EW; Khatri N; Wilson JR
    Plant Dis; 2024 May; 108(5):1246-1251. PubMed ID: 37923977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum.
    Zhang L; Zheng Y; Jagadeeswaran G; Li Y; Gowdu K; Sunkar R
    Genomics; 2011 Dec; 98(6):460-8. PubMed ID: 21907786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum).
    Xie F; Frazier TP; Zhang B
    Planta; 2010 Jul; 232(2):417-34. PubMed ID: 20461402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.