These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 27838801)
1. Cerium(III) Ion Sensing Based on Graphene Quantum Dots Fluorescent Turn-Off. Salehnia F; Faridbod F; Dezfuli AS; Ganjali MR; Norouzi P J Fluoresc; 2017 Jan; 27(1):331-338. PubMed ID: 27838801 [TBL] [Abstract][Full Text] [Related]
2. A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion. Amjadi M; Shokri R; Hallaj T Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():619-24. PubMed ID: 26452097 [TBL] [Abstract][Full Text] [Related]
4. One-step synthesis of fluorescent graphene quantum dots as an effective fluorescence probe for vanillin detection. Zhu S; Bai X; Wang T; Shi Q; Zhu J; Wang B RSC Adv; 2021 Mar; 11(16):9121-9129. PubMed ID: 35423426 [TBL] [Abstract][Full Text] [Related]
5. A New Fluorescence Sensor for Cerium (III) Ion Using Glycine Dithiocarbamate Capped Manganese Doped ZnS Quantum Dots. Rofouei MK; Tajarrod N; Masteri-Farahani M; Zadmard R J Fluoresc; 2015 Nov; 25(6):1855-66. PubMed ID: 26462814 [TBL] [Abstract][Full Text] [Related]
6. Highly Selective Fluorescence Sensor Based on Graphene Quantum Dots for Sulfamethoxazole Determination. Le TH; Lee HJ; Kim JH; Park SJ Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32492851 [TBL] [Abstract][Full Text] [Related]
7. A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene quantum dots for chloramphenicol determination. Liu Y; Yan K; Okoth OK; Zhang J Biosens Bioelectron; 2015 Dec; 74():1016-21. PubMed ID: 26264269 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of highly fluorescent and water soluble graphene quantum dots for detection of heavy metal ions in aqueous media. Raj SK; Yadav V; Bhadu GR; Patidar R; Kumar M; Kulshrestha V Environ Sci Pollut Res Int; 2021 Sep; 28(34):46336-46342. PubMed ID: 32056095 [TBL] [Abstract][Full Text] [Related]
9. A graphene quantum dot-based method for the highly sensitive and selective fluorescence turn on detection of biothiols. Wu Z; Li W; Chen J; Yu C Talanta; 2014 Feb; 119():538-43. PubMed ID: 24401453 [TBL] [Abstract][Full Text] [Related]
10. Graphene quantum dots sensor for the determination of graphene oxide in environmental water samples. Benítez-Martínez S; López-Lorente ÁI; Valcárcel M Anal Chem; 2014 Dec; 86(24):12279-84. PubMed ID: 25407254 [TBL] [Abstract][Full Text] [Related]
11. Hydrophilic graphene quantum dots as turn-off fluorescent nanoprobes for toxic heavy metal ions detection in aqueous media. Anusuya T; Kumar V; Kumar V Chemosphere; 2021 Nov; 282():131019. PubMed ID: 34098309 [TBL] [Abstract][Full Text] [Related]
12. Engineering of graphene quantum dots by varying the properties of graphene oxide for fluorescence detection of picric acid. Mukherjee D; Das P; Kundu S; Mandal B Chemosphere; 2022 Aug; 300():134432. PubMed ID: 35398072 [TBL] [Abstract][Full Text] [Related]
13. Graphene quantum dots as selective fluorescence sensor for the detection of ascorbic acid and acid phosphatase via Cr(vi)/Cr(iii)-modulated redox reaction. Shi F; Zhang Y; Na W; Zhang X; Li Y; Su X J Mater Chem B; 2016 May; 4(19):3278-3285. PubMed ID: 32263263 [TBL] [Abstract][Full Text] [Related]
14. Alendronate-Functionalized Graphene Quantum Dots as an Effective Fluorescent Sensing Platform for Arsenic Ion Detection. Mohagheghpour E; Farzin L; Sadjadi S Biol Trace Elem Res; 2024 May; 202(5):2391-2401. PubMed ID: 37597070 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media. Ju J; Chen W Biosens Bioelectron; 2014 Aug; 58():219-25. PubMed ID: 24650437 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of Orange Fluorescent Boron-Doped Graphene Quantum Dots for Al Li W; Zhang L; Jiang N; Chen Y; Gao J; Zhang J; Yang B; Liu J Molecules; 2022 Oct; 27(19):. PubMed ID: 36235307 [TBL] [Abstract][Full Text] [Related]
17. Quantitative Understanding of Charge-Transfer-Mediated Fe Das R; Sugimoto H; Fujii M; Giri PK ACS Appl Mater Interfaces; 2020 Jan; 12(4):4755-4768. PubMed ID: 31914727 [TBL] [Abstract][Full Text] [Related]
18. N-Doped Graphene Quantum Dots-Decorated V Ganganboina AB; Dutta Chowdhury A; Doong RA ACS Appl Mater Interfaces; 2018 Jan; 10(1):614-624. PubMed ID: 29227622 [TBL] [Abstract][Full Text] [Related]
19. The Fluorescent Quenching Mechanism of N and S Co-Doped Graphene Quantum Dots with Fe Yang Y; Zou T; Wang Z; Xing X; Peng S; Zhao R; Zhang X; Wang Y Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31086109 [TBL] [Abstract][Full Text] [Related]
20. Microwave synthesis of boron- and nitrogen-codoped graphene quantum dots and their detection to pesticides and metal ions. Hsieh CT; Sung PY; Gandomi YA; Khoo KS; Chang JK Chemosphere; 2023 Mar; 318():137926. PubMed ID: 36682636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]