These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27838826)

  • 1. Pairwise Classifier Ensemble with Adaptive Sub-Classifiers for fMRI Pattern Analysis.
    Kim E; Park H
    Neurosci Bull; 2017 Feb; 33(1):41-52. PubMed ID: 27838826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.
    Yourganov G; Schmah T; Churchill NW; Berman MG; Grady CL; Strother SC
    Neuroimage; 2014 Aug; 96():117-32. PubMed ID: 24705202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariate detrending of fMRI signal drifts for real-time multiclass pattern classification.
    Lee D; Jang C; Park HJ
    Neuroimage; 2015 Mar; 108():203-13. PubMed ID: 25573669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
    Hausfeld L; Valente G; Formisano E
    Neuroimage; 2014 Aug; 96():54-66. PubMed ID: 24531045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classifier ensembles for fMRI data analysis: an experiment.
    Kuncheva LI; Rodríguez JJ
    Magn Reson Imaging; 2010 May; 28(4):583-93. PubMed ID: 20096528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. fMRI pattern classification using neuroanatomically constrained boosting.
    Martínez-Ramón M; Koltchinskii V; Heileman GL; Posse S
    Neuroimage; 2006 Jul; 31(3):1129-41. PubMed ID: 16529955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fuzzy integral method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification across multiple subjects.
    Cacha LA; Parida S; Dehuri S; Cho SB; Poznanski RR
    J Integr Neurosci; 2016 Dec; 15(4):593-606. PubMed ID: 28093025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An empirical solution for over-pruning with a novel ensemble-learning method for fMRI decoding.
    Hirose S; Nambu I; Naito E
    J Neurosci Methods; 2015 Jan; 239():238-45. PubMed ID: 25445247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-step paretial least square regression classifiers in brain-state decoding using functional magnetic resonance imaging.
    Long Z; Wang Y; Liu X; Yao L
    PLoS One; 2019; 14(4):e0214937. PubMed ID: 30970029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random subspace ensembles for FMRI classification.
    Kuncheva LI; Rodriguez JJ; Plumpton CO; Linden DE; Johnston SJ
    IEEE Trans Med Imaging; 2010 Feb; 29(2):531-42. PubMed ID: 20129853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data.
    Zhang C; Song S; Wen X; Yao L; Long Z
    J Neurosci Methods; 2015 Apr; 245():15-24. PubMed ID: 25681758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voxel-Based Diagnosis of Alzheimer's Disease Using Classifier Ensembles.
    Armananzas R; Iglesias M; Morales DA; Alonso-Nanclares L
    IEEE J Biomed Health Inform; 2017 May; 21(3):778-784. PubMed ID: 28113481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation.
    Rohlfing T; Russakoff DB; Maurer CR
    IEEE Trans Med Imaging; 2004 Aug; 23(8):983-94. PubMed ID: 15338732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical multi-resolution mesh networks for brain decoding.
    Onal Ertugrul I; Ozay M; Yarman Vural FT
    Brain Imaging Behav; 2018 Aug; 12(4):1067-1083. PubMed ID: 28980144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing for spatial heterogeneity in functional MRI using the multivariate general linear model.
    Leech R; Leech D
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1293-302. PubMed ID: 21324775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially adaptive mixture modeling for analysis of FMRI time series.
    Vincent T; Risser L; Ciuciu P
    IEEE Trans Med Imaging; 2010 Apr; 29(4):1059-74. PubMed ID: 20350840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High level group analysis of FMRI data based on Dirichlet process mixture models.
    Thirion B; Tucholka A; Keller M; Pinel P; Roche A; Mangin JF; Poline JB
    Inf Process Med Imaging; 2007; 20():482-94. PubMed ID: 17633723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially regularized machine learning for task and resting-state fMRI.
    Song X; Panych LP; Chen NK
    J Neurosci Methods; 2016 Jan; 257():214-28. PubMed ID: 26470627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative modeling of the neural representation of objects: how semantic feature norms can account for fMRI activation.
    Chang KM; Mitchell T; Just MA
    Neuroimage; 2011 May; 56(2):716-27. PubMed ID: 20451625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.