BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 27838847)

  • 1. Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species.
    Samoluk SS; Robledo G; Bertioli D; Seijo JG
    Mol Genet Genomics; 2017 Apr; 292(2):283-296. PubMed ID: 27838847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterochromatin evolution in Arachis investigated through genome-wide analysis of repetitive DNA.
    Samoluk SS; Chalup LMI; Chavarro C; Robledo G; Bertioli DJ; Jackson SA; Seijo G
    Planta; 2019 May; 249(5):1405-1415. PubMed ID: 30680457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative repeatome analysis reveals new evidence on genome evolution in wild diploid Arachis (Fabaceae) species.
    Samoluk SS; Vaio M; Ortíz AM; Chalup LMI; Robledo G; Bertioli DJ; Seijo G
    Planta; 2022 Jul; 256(3):50. PubMed ID: 35895167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytogenetic evidences on the evolutionary relationships between the tetraploids of the section Rhizomatosae and related diploid species (Arachis, Leguminosae).
    Ortiz AM; Robledo G; Seijo G; Valls JFM; Lavia GI
    J Plant Res; 2017 Sep; 130(5):791-807. PubMed ID: 28536982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First insight into divergence, representation and chromosome distribution of reverse transcriptase fragments from L1 retrotransposons in peanut and wild relative species.
    Samoluk SS; Robledo G; Podio M; Chalup L; Ortiz JP; Pessino SC; Seijo JG
    Genetica; 2015 Feb; 143(1):113-25. PubMed ID: 25633099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement.
    Robledo G; Seijo G
    Theor Appl Genet; 2010 Oct; 121(6):1033-46. PubMed ID: 20552326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection.
    Robledo G; Lavia GI; Seijo G
    Theor Appl Genet; 2009 May; 118(7):1295-307. PubMed ID: 19234686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural History of a Satellite DNA Family: From the Ancestral Genome Component to Species-Specific Sequences, Concerted and Non-Concerted Evolution.
    Belyayev A; Josefiová J; Jandová M; Kalendar R; Krak K; Mandák B
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30857296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome diversity in species of the genus Arachis, revealed by FISH and CMA/DAPI banding, and inferences about their karyotype differentiation.
    Silvestri MC; Ortiz AM; Robledo GA; Lavia GI
    An Acad Bras Cienc; 2020 Sep; 92(suppl 2):e20191364. PubMed ID: 32901677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The major satellite DNA families of the diploid Chenopodium album aggregate species: Arguments for and against the "library hypothesis".
    Belyayev A; Jandová M; Josefiová J; Kalendar R; Mahelka V; Mandák B; Krak K
    PLoS One; 2020; 15(10):e0241206. PubMed ID: 33108401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary dynamics of two satellite DNA families in rock lizards of the genus Iberolacerta (Squamata, Lacertidae): different histories but common traits.
    Rojo V; Martínez-Lage A; Giovannotti M; González-Tizón AM; Nisi Cerioni P; Caputo Barucchi V; Galán P; Olmo E; Naveira H
    Chromosome Res; 2015 Sep; 23(3):441-61. PubMed ID: 26384818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization.
    Lee YI; Yap JW; Izan S; Leitch IJ; Fay MF; Lee YC; Hidalgo O; Dodsworth S; Smulders MJM; Gravendeel B; Leitch AR
    BMC Genomics; 2018 Aug; 19(1):578. PubMed ID: 30068293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of peanut (Arachis hypogaea) chromosomes using a fluorescence in situ hybridization system reveals multiple hybridization events during tetraploid peanut formation.
    Zhang L; Yang X; Tian L; Chen L; Yu W
    New Phytol; 2016 Sep; 211(4):1424-39. PubMed ID: 27176118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of the repetitive DNA fraction in Cestrum, the genus with the largest genomes within Solanaceae.
    de Souza TB; Parteka LM; de Assis R; Vanzela ALL
    Mol Biol Rep; 2022 Sep; 49(9):8785-8799. PubMed ID: 35809181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concerted evolution of satellite DNA in Sarcocapnos: a matter of time.
    Pérez-Gutiérrez MA; Suárez-Santiago VN; López-Flores I; Romero AT; Garrido-Ramos MA
    Plant Mol Biol; 2012 Jan; 78(1-2):19-29. PubMed ID: 22081315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution chromosome painting with repetitive and single-copy oligonucleotides in Arachis species identifies structural rearrangements and genome differentiation.
    Du P; Li L; Liu H; Fu L; Qin L; Zhang Z; Cui C; Sun Z; Han S; Xu J; Dai X; Huang B; Dong W; Tang F; Zhuang L; Han Y; Qi Z; Zhang X
    BMC Plant Biol; 2018 Oct; 18(1):240. PubMed ID: 30333010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Satellite DNA and chromosomes in Neotropical fishes: methods, applications and perspectives.
    Vicari MR; Nogaroto V; Noleto RB; Cestari MM; Cioffi MB; Almeida MC; Moreira-Filho O; Bertollo LA; Artoni RF
    J Fish Biol; 2010 Apr; 76(5):1094-116. PubMed ID: 20409164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae).
    Matsubara K; Uno Y; Srikulnath K; Seki R; Nishida C; Matsuda Y
    Chromosoma; 2015 Dec; 124(4):529-39. PubMed ID: 26205503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomal study of a lamprey (Lampetra zanandreai Vladykov, 1955) (Petromyzonida: Petromyzontiformes): conventional and FISH analysis.
    Caputo V; Giovannotti M; Cerioni PN; Splendiani A; Tagliavini J; Olmo E
    Chromosome Res; 2011 May; 19(4):481-91. PubMed ID: 21437736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.