These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
525 related articles for article (PubMed ID: 27839551)
1. Mapping the body surface temperature of cattle by infrared thermography. Salles MS; da Silva SC; Salles FA; Roma LC; El Faro L; Bustos Mac Lean PA; Lins de Oliveira CE; Martello LS J Therm Biol; 2016 Dec; 62(Pt A):63-69. PubMed ID: 27839551 [TBL] [Abstract][Full Text] [Related]
2. Infrared thermography measured body surface temperature and its relationship with rectal temperature in dairy cows under different temperature-humidity indexes. Peng D; Chen S; Li G; Chen J; Wang J; Gu X Int J Biometeorol; 2019 Mar; 63(3):327-336. PubMed ID: 30680628 [TBL] [Abstract][Full Text] [Related]
3. Infrared thermography as a tool to evaluate body surface temperature and its relationship with feed efficiency in Bos indicus cattle in tropical conditions. Martello LS; da Luz E Silva S; da Costa Gomes R; da Silva Corte RR; Leme PR Int J Biometeorol; 2016 Jan; 60(1):173-81. PubMed ID: 26070369 [TBL] [Abstract][Full Text] [Related]
4. Infrared thermography reveals surface body temperature changes during proestrus and estrus reproductive phases in Gyr heifers (Bos taurus indicus). Vicentini RR; Montanholi YR; Veroneze R; Oliveira AP; Lima MLP; Ujita A; El Faro L J Therm Biol; 2020 Aug; 92():102662. PubMed ID: 32888565 [TBL] [Abstract][Full Text] [Related]
5. Prediction of rectal temperature in Holstein heifers using infrared thermography, respiration frequency, and climatic variables. Theusme C; Avendaño-Reyes L; Macías-Cruz U; Castañeda-Bustos V; García-Cueto R; Vicente-Pérez R; Mellado M; Meza-Herrera C; Vargas-Villamil L Int J Biometeorol; 2022 Dec; 66(12):2489-2500. PubMed ID: 36239801 [TBL] [Abstract][Full Text] [Related]
6. Application of microchip and infrared thermography for monitoring body temperature of beef cattle kept on pasture. Giro A; Bernardi ACC; Barioni Junior W; Lemes AP; Botta D; Romanello N; Barreto ADN; Garcia AR J Therm Biol; 2019 Aug; 84():121-128. PubMed ID: 31466744 [TBL] [Abstract][Full Text] [Related]
7. Spatiotemporal variations on infrared temperature as a thermal comfort indicator for cattle under agroforestry systems. Karvatte N; Miyagi ES; Carvalho de Oliveira C; Mastelaro AP; de Aguiar Coelho F; Bayma G; Bungenstab DJ; Alves FV J Therm Biol; 2021 Apr; 97():102871. PubMed ID: 33863435 [TBL] [Abstract][Full Text] [Related]
8. The uses of infrared thermography to evaluate the effects of climatic variables in bull's reproduction. Menegassi SR; Pereira GR; Dias EA; Koetz C; Lopes FG; Bremm C; Pimentel C; Lopes RB; da Rocha MK; Carvalho HR; Barcellos JO Int J Biometeorol; 2016 Jan; 60(1):151-7. PubMed ID: 26049285 [TBL] [Abstract][Full Text] [Related]
9. Infrared Thermography to Evaluate Heat Tolerance in Different Genetic Groups of Lambs. McManus C; Bianchini E; Paim Tdo P; de Lima FG; Neto JB; Castanheira M; Esteves GI; Cardoso CC; Dalcin VC Sensors (Basel); 2015 Jul; 15(7):17258-73. PubMed ID: 26193274 [TBL] [Abstract][Full Text] [Related]
10. Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle. George WD; Godfrey RW; Ketring RC; Vinson MC; Willard ST J Anim Sci; 2014 Nov; 92(11):4949-55. PubMed ID: 25253816 [TBL] [Abstract][Full Text] [Related]
11. Use of infrared thermography to assess the influence of high environmental temperature on rabbits. de Lima V; Piles M; Rafel O; López-Béjar M; Ramón J; Velarde A; Dalmau A Res Vet Sci; 2013 Oct; 95(2):802-10. PubMed ID: 23642484 [TBL] [Abstract][Full Text] [Related]
12. Relationships of body surface thermography with core temperature, birth weight and climatic variables in neonatal lambs born during early spring in an arid region. Vicente-Pérez R; Avendaño-Reyes L; Correa-Calderón A; Mellado M; Meza-Herrera CA; Montañez-Valdez OD; Macías-Cruz U J Therm Biol; 2019 May; 82():142-149. PubMed ID: 31128641 [TBL] [Abstract][Full Text] [Related]
13. Non-Invasive Cattle Body Temperature Measurement Using Infrared Thermography and Auxiliary Sensors. Wang FK; Shih JY; Juan PH; Su YC; Wang YC Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33915906 [TBL] [Abstract][Full Text] [Related]
14. Assessment of pregnancy in the late-gestation mare using digital infrared thermography. Bowers S; Gandy S; Anderson B; Ryan P; Willard S Theriogenology; 2009 Aug; 72(3):372-7. PubMed ID: 19482351 [TBL] [Abstract][Full Text] [Related]
15. Monitoring changes in body surface temperature associated with treadmill exercise in dogs by use of infrared methodology. Rizzo M; Arfuso F; Alberghina D; Giudice E; Gianesella M; Piccione G J Therm Biol; 2017 Oct; 69():64-68. PubMed ID: 29037406 [TBL] [Abstract][Full Text] [Related]
16. Infrared technology for estrus detection and as a predictor of time of ovulation in dairy cows in a pasture-based system. Talukder S; Kerrisk KL; Ingenhoff L; Thomson PC; Garcia SC; Celi P Theriogenology; 2014 Apr; 81(7):925-35. PubMed ID: 24560547 [TBL] [Abstract][Full Text] [Related]
17. Short communication: using infrared thermography as an in situ measure of core body temperature in lot-fed Angus steers. Lees AM; Lees JC; Sejian V; Wallage AL; Gaughan JB Int J Biometeorol; 2018 Jan; 62(1):3-8. PubMed ID: 28894980 [TBL] [Abstract][Full Text] [Related]
18. Assessment of heat production and methane emission using infrared thermography in lactating Holstein and Gyrolando-F1 (½ Holstein ½ Gyr) crossbreed cows. Guadagnin AR; Matiello JP; Ribeiro RS; Pereira LGR; Machado FS; Tomich TR; Campos MM; Heisler G; Fischer V J Therm Biol; 2023 Jul; 115():103628. PubMed ID: 37422965 [TBL] [Abstract][Full Text] [Related]
19. Influence of environmental factors on infrared eye temperature measurements in cattle. Church JS; Hegadoren PR; Paetkau MJ; Miller CC; Regev-Shoshani G; Schaefer AL; Schwartzkopf-Genswein KS Res Vet Sci; 2014 Feb; 96(1):220-6. PubMed ID: 24290729 [TBL] [Abstract][Full Text] [Related]
20. The development of a non-invasive behavioral model of thermal heat stress in laboratory mice (Mus musculus). Mufford JT; Paetkau MJ; Flood NJ; Regev-Shoshani G; Miller CC; Church JS J Neurosci Methods; 2016 Aug; 268():189-95. PubMed ID: 26738657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]