These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 27839555)

  • 1. Measurements of nanoparticle-enhanced heating from 1MHz ultrasound in solution and in mice bearing CT26 colon tumors.
    Beik J; Abed Z; Ghadimi-Daresajini A; Nourbakhsh M; Shakeri-Zadeh A; Ghasemi MS; Shiran MB
    J Therm Biol; 2016 Dec; 62(Pt A):84-89. PubMed ID: 27839555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined thermo-chemotherapy of cancer using 1 MHz ultrasound waves and a cisplatin-loaded sonosensitizing nanoplatform: an in vivo study.
    Irajirad R; Ahmadi A; Najafabad BK; Abed Z; Sheervalilou R; Khoei S; Shiran MB; Ghaznavi H; Shakeri-Zadeh A
    Cancer Chemother Pharmacol; 2019 Dec; 84(6):1315-1321. PubMed ID: 31559450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery.
    Kossatz S; Grandke J; Couleaud P; Latorre A; Aires A; Crosbie-Staunton K; Ludwig R; Dähring H; Ettelt V; Lazaro-Carrillo A; Calero M; Sader M; Courty J; Volkov Y; Prina-Mello A; Villanueva A; Somoza Á; Cortajarena AL; Miranda R; Hilger I
    Breast Cancer Res; 2015 May; 17(1):66. PubMed ID: 25968050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment.
    LeBrun A; Ma R; Zhu L
    J Therm Biol; 2016 Dec; 62(Pt B):129-137. PubMed ID: 27888926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the heating properties of platinum nanoparticles under a radiofrequency current.
    San BH; Moh SH; Kim KK
    Int J Hyperthermia; 2013; 29(2):99-105. PubMed ID: 23350813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle.
    Beik J; Asadi M; Khoei S; Laurent S; Abed Z; Mirrahimi M; Farashahi A; Hashemian R; Ghaznavi H; Shakeri-Zadeh A
    J Photochem Photobiol B; 2019 Oct; 199():111599. PubMed ID: 31470271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective radiofrequency ablation of tumor by magnetically targeting of multifunctional iron oxide-gold nanohybrid.
    Beyk J; Tavakoli H
    J Cancer Res Clin Oncol; 2019 Sep; 145(9):2199-2209. PubMed ID: 31309302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocols for assessing radiofrequency interactions with gold nanoparticles and biological systems for non-invasive hyperthermia cancer therapy.
    Corr SJ; Cisneros BT; Green L; Raoof M; Curley SA
    J Vis Exp; 2013 Aug; (78):. PubMed ID: 24022384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment.
    Espinosa A; Di Corato R; Kolosnjaj-Tabi J; Flaud P; Pellegrino T; Wilhelm C
    ACS Nano; 2016 Feb; 10(2):2436-46. PubMed ID: 26766814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesenchymal Stem Cells Aggregate and Deliver Gold Nanoparticles to Tumors for Photothermal Therapy.
    Kang S; Bhang SH; Hwang S; Yoon JK; Song J; Jang HK; Kim S; Kim BS
    ACS Nano; 2015 Oct; 9(10):9678-90. PubMed ID: 26348606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OCT-guided laser hyperthermia with passively tumor-targeted gold nanoparticles.
    Sirotkina MA; Elagin VV; Shirmanova MV; Bugrova ML; Snopova LB; Kamensky VA; Nadtochenko VA; Denisov NN; Zagaynova EV
    J Biophotonics; 2010 Oct; 3(10-11):718-27. PubMed ID: 20626005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive monitoring of branched Au nanoparticle-mediated photothermal ablation.
    Zhao K; Cho S; Procissi D; Larson AC; Kim DH
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2352-2359. PubMed ID: 27520071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localised heating of tumours utilising injectable magnetic nanoparticles for hyperthermia cancer therapy.
    Tseng HY; Lee GB; Lee CY; Shih YH; Lin XZ
    IET Nanobiotechnol; 2009 Jun; 3(2):46-54. PubMed ID: 19485552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic hyperthermia or radiofrequency electric field hyperthermia of cancerous cells through green-synthesized curcumin-coated gold nanoparticles.
    Rezaeian A; Amini SM; Najafabadi MRH; Farsangi ZJ; Samadian H
    Lasers Med Sci; 2022 Mar; 37(2):1333-1341. PubMed ID: 34406533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroPET-compatible, small animal hyperthermia ultrasound system (SAHUS) for sustainable, collimated and controlled hyperthermia of subcutaneously implanted tumours.
    Singh AK; Moros EG; Novak P; Straube W; Zeug A; Locke JE; Myerson RJ
    Int J Hyperthermia; 2004 Feb; 20(1):32-44. PubMed ID: 14612312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of absorption of radio frequency field by gold nanoparticles and nanoclusters in biological medium.
    Narasimh An AK; Chakaravarthi G; Rao MSR; Arunachalam K
    Electromagn Biol Med; 2020 Jul; 39(3):183-195. PubMed ID: 32408843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold-Gold Sulfide nanoparticles intensify thermal effects of radio frequency electromagnetic field.
    Sadeghi HR; Toosi MH; Soudmand S; Sadoughi HR; Sazgarnia A
    J Exp Ther Oncol; 2014; 10(4):285-91. PubMed ID: 25509984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of gold nanoparticle size on acoustic cavitation using chemical dosimetry method.
    Shanei A; Shanei MM
    Ultrason Sonochem; 2017 Jan; 34():45-50. PubMed ID: 27773268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Particle and PET-based Platform for Identifying Optimal Plasmonic Nano-Heaters for Photothermal Cancer Therapy.
    Jørgensen JT; Norregaard K; Tian P; Bendix PM; Kjaer A; Oddershede LB
    Sci Rep; 2016 Aug; 6():30076. PubMed ID: 27481537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.