These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 27839682)
1. Enhanced rhamnolipids production via efficient foam-control using stop valve as a foam breaker. Long X; Shen C; He N; Zhang G; Meng Q Bioresour Technol; 2017 Jan; 224():536-543. PubMed ID: 27839682 [TBL] [Abstract][Full Text] [Related]
2. Recent progress towards industrial rhamnolipids fermentation: Process optimization and foam control. Jiang J; Zu Y; Li X; Meng Q; Long X Bioresour Technol; 2020 Feb; 298():122394. PubMed ID: 31757615 [TBL] [Abstract][Full Text] [Related]
3. Optimization and scale-up of the production of rhamnolipid by Pseudomonas aeruginosa in solid-state fermentation using high-density polyurethane foam as an inert support. Gong Z; He Q; Che C; Liu J; Yang G Bioprocess Biosyst Eng; 2020 Mar; 43(3):385-392. PubMed ID: 31724063 [TBL] [Abstract][Full Text] [Related]
4. Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control. Bazsefidpar S; Mokhtarani B; Panahi R; Hajfarajollah H Biodegradation; 2019 Feb; 30(1):59-69. PubMed ID: 30600422 [TBL] [Abstract][Full Text] [Related]
5. Production and characterization of rhamnolipid using palm oil agricultural refinery waste. Radzuan MN; Banat IM; Winterburn J Bioresour Technol; 2017 Feb; 225():99-105. PubMed ID: 27888734 [TBL] [Abstract][Full Text] [Related]
6. Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. Zhu L; Yang X; Xue C; Chen Y; Qu L; Lu W Bioresour Technol; 2012 Aug; 117():208-13. PubMed ID: 22613897 [TBL] [Abstract][Full Text] [Related]
7. Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Müller MM; Hausmann R Appl Microbiol Biotechnol; 2011 Jul; 91(2):251-64. PubMed ID: 21667084 [TBL] [Abstract][Full Text] [Related]
9. Maximize rhamnolipid production with low foaming and high yield. Sodagari M; Invally K; Ju LK Enzyme Microb Technol; 2018 Mar; 110():79-86. PubMed ID: 29310859 [TBL] [Abstract][Full Text] [Related]
10. Rhamnolipid production, characterization and fermentation scale-up by Pseudomonas aeruginosa with plant oils. Gong Z; Peng Y; Wang Q Biotechnol Lett; 2015 Oct; 37(10):2033-8. PubMed ID: 26087946 [TBL] [Abstract][Full Text] [Related]
11. Fermentative production of rhamnolipid and purification by adsorption chromatography. Jadhav J; Dutta S; Kale S; Pratap A Prep Biochem Biotechnol; 2018 Mar; 48(3):234-241. PubMed ID: 29313452 [TBL] [Abstract][Full Text] [Related]
12. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Li AH; Xu MY; Sun W; Sun GP Appl Biochem Biotechnol; 2011 Mar; 163(5):600-11. PubMed ID: 20830582 [TBL] [Abstract][Full Text] [Related]
13. Polyhydroxyalkanoic acids and rhamnolipids are synthesized sequentially in hexadecane fermentation by Pseudomonas aeruginosa ATCC 10145. Chayabutra C; Ju LK Biotechnol Prog; 2001; 17(3):419-23. PubMed ID: 11386860 [TBL] [Abstract][Full Text] [Related]
14. Continuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa. Heyd M; Franzreb M; Berensmeier S Biotechnol Prog; 2011; 27(3):706-16. PubMed ID: 21567991 [TBL] [Abstract][Full Text] [Related]
15. Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. Sha R; Jiang L; Meng Q; Zhang G; Song Z J Basic Microbiol; 2012 Aug; 52(4):458-66. PubMed ID: 22052667 [TBL] [Abstract][Full Text] [Related]
16. Enhanced rhamnolipid production by Pseudomonas aeruginosa USM-AR2 via fed-batch cultivation based on maximum substrate uptake rate. Noh NA; Salleh SM; Yahya AR Lett Appl Microbiol; 2014 Jun; 58(6):617-23. PubMed ID: 24698293 [TBL] [Abstract][Full Text] [Related]
17. Analysis of rhamnolipid biosurfactants by methylene blue complexation. Pinzon NM; Ju LK Appl Microbiol Biotechnol; 2009 Apr; 82(5):975-81. PubMed ID: 19214498 [TBL] [Abstract][Full Text] [Related]
18. Foam adsorption as an ex situ capture step for surfactants produced by fermentation. Anic I; Nath A; Franco P; Wichmann R J Biotechnol; 2017 Sep; 258():181-189. PubMed ID: 28723386 [TBL] [Abstract][Full Text] [Related]
19. Production of rhamnolipids by integrated foam adsorption in a bioreactor system. Anic I; Apolonia I; Franco P; Wichmann R AMB Express; 2018 Jul; 8(1):122. PubMed ID: 30043199 [TBL] [Abstract][Full Text] [Related]
20. Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant. Wild M; Caro AD; Hernández AL; Miller RM; Soberón-Chávez G FEMS Microbiol Lett; 1997 Aug; 153(2):279-85. PubMed ID: 9271853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]