These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27839832)

  • 1. Sterols indicate water quality and wastewater treatment efficiency.
    Reichwaldt ES; Ho WY; Zhou W; Ghadouani A
    Water Res; 2017 Jan; 108():401-411. PubMed ID: 27839832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of organic micropollutants in waste stabilisation ponds: A review.
    Gruchlik Y; Linge K; Joll C
    J Environ Manage; 2018 Jan; 206():202-214. PubMed ID: 29073579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sludge accumulation and distribution impact the hydraulic performance in waste stabilisation ponds.
    Coggins LX; Ghisalberti M; Ghadouani A
    Water Res; 2017 Mar; 110():354-365. PubMed ID: 28062073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in waste stabilisation pond performance resulting from the retrofit of activated sludge treatment upstream: part I--water quality issues.
    Cromar NJ; Sweeney DG; O'Brien MJ; Fallowfield HJ
    Water Sci Technol; 2005; 51(12):11-6. PubMed ID: 16114658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steroid-based tracing of sewage-sourced pollution of river water and wastewater treatment efficiency: Dissolved and suspended water phase distribution.
    Jauković Z; Grujić S; Bujagić IM; Petković A; Laušević M
    Sci Total Environ; 2022 Nov; 846():157510. PubMed ID: 35870600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dairy farm wastewater treatment by an advanced pond system.
    Craggs RJ; Tanner CC; Sukias JP; Davies-Colley RJ
    Water Sci Technol; 2003; 48(2):291-7. PubMed ID: 14510223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of indicator organisms in wastewater treated by a high rate algal pond system.
    Young P; Buchanan N; Fallowfield HJ
    J Appl Microbiol; 2016 Aug; 121(2):577-86. PubMed ID: 27187055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disinfection and removal of human pathogenic bacteria in arctic waste stabilization ponds.
    Huang Y; Truelstrup Hansen L; Ragush CM; Jamieson RC
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):32881-32893. PubMed ID: 28353112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waste Stabilization Pond (WSP) for wastewater treatment: A review on factors, modelling and cost analysis.
    Mahapatra S; Samal K; Dash RR
    J Environ Manage; 2022 Apr; 308():114668. PubMed ID: 35152038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polishing ponds for post-treatment of digested sewage. Part 1: Flow-through ponds.
    Cavalcanti PF; van Haandel A; Lettinga G
    Water Sci Technol; 2001; 44(4):237-45. PubMed ID: 11575089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring Microbial Populations and Antibiotic Resistance Gene Enrichment Associated with Arctic Waste Stabilization Ponds.
    Gromala M; Neufeld JD; McConkey BJ
    Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33452030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of micropollutant indicator ratios to characterize wastewater treatment plant efficiency and to identify wastewater impact on groundwater.
    Linge KL; Gruchlik Y; Busetti F; Ryan U; Joll CA
    J Environ Manage; 2024 May; 358():120822. PubMed ID: 38599088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying avian sources of faecal contamination using sterol analysis.
    Devane ML; Wood D; Chappell A; Robson B; Webster-Brown J; Gilpin BJ
    Environ Monit Assess; 2015 Oct; 187(10):625. PubMed ID: 26370196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of 388 full-scale waste stabilization pond systems with seven different configurations.
    Espinosa MF; von Sperling M; Verbyla ME
    Water Sci Technol; 2017 Feb; 75(3-4):916-927. PubMed ID: 28234292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial water quality and sedimentary faecal sterols as markers of sewage contamination in Kuwait.
    Lyons BP; Devlin MJ; Abdul Hamid SA; Al-Otiabi AF; Al-Enezi M; Massoud MS; Al-Zaidan AS; Smith AJ; Morris S; Bersuder P; Barber JL; Papachlimitzou A; Al-Sarawi HA
    Mar Pollut Bull; 2015 Nov; 100(2):689-98. PubMed ID: 26228071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical characteristics of waste stabilization ponds: recommendations for monitoring.
    Davies-Colley RJ; Craggs RJ; Park J; Nagels JW
    Water Sci Technol; 2005; 51(12):153-61. PubMed ID: 16114678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in waste stabilisation pond performance resulting from the retrofit of activated sludge treatment upstream: part II--Management and operating issues.
    Sweeney DG; O'Brien MJ; Cromar NJ; Fallowfield HJ
    Water Sci Technol; 2005; 51(12):17-22. PubMed ID: 16114659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of sludge layer geometry on the hydraulic performance of a waste stabilization pond.
    Ouedraogo FR; Zhang J; Cornejo PK; Zhang Q; Mihelcic JR; Tejada-Martinez AE
    Water Res; 2016 Aug; 99():253-262. PubMed ID: 27176549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of water hyacinth plants into waste stabilization ponds: a case study of Donnybrook 4 Sewage Ponds in Mabvuku-Tafara, Harare, Zimbabwe.
    Hoko Z; Toto TN
    Environ Monit Assess; 2020 Sep; 192(10):625. PubMed ID: 32897491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the treatment performance of a high rate algal pond and a facultative waste stabilisation pond operating in rural South Australia.
    Buchanan N; Young P; Cromar NJ; Fallowfield HJ
    Water Sci Technol; 2018 Aug; 78(1-2):3-11. PubMed ID: 30101783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.