These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27839863)

  • 1. Liquid lipases for enzymatic concentration of n-3 polyunsaturated fatty acids in monoacylglycerols via ethanolysis: Catalytic specificity and parameterization.
    He Y; Li J; Kodali S; Balle T; Chen B; Guo Z
    Bioresour Technol; 2017 Jan; 224():445-456. PubMed ID: 27839863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The near-ideal catalytic property of Candida antarctica lipase A to highly concentrate n-3 polyunsaturated fatty acids in monoacylglycerols via one-step ethanolysis of triacylglycerols.
    He Y; Li J; Kodali S; Chen B; Guo Z
    Bioresour Technol; 2016 Nov; 219():466-478. PubMed ID: 27521783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rationale behind the near-ideal catalysis of Candida antarctica lipase A (CAL-A) for highly concentrating ω-3 polyunsaturated fatty acids into monoacylglycerols.
    He Y; Li J; Kodali S; Chen B; Guo Z
    Food Chem; 2017 Mar; 219():230-239. PubMed ID: 27765222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical Role of Different Immobilized Biocatalysts of a Given Lipase in the Selective Ethanolysis of Sardine Oil.
    Moreno-Perez S; Turati DF; Borges JP; Luna P; Señorans FJ; Guisan JM; Fernandez-Lorente G
    J Agric Food Chem; 2017 Jan; 65(1):117-122. PubMed ID: 27973785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil.
    Kahveci D; Xu X
    Biotechnol Lett; 2011 Oct; 33(10):2065-71. PubMed ID: 21695486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.
    Rodríguez A; Esteban L; Martín L; Jiménez MJ; Hita E; Castillo B; González PA; Robles A
    Enzyme Microb Technol; 2012 Aug; 51(3):148-55. PubMed ID: 22759534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and concentration of monoacylglycerols rich in omega-3 polyunsaturated fatty acids by enzymatic glycerolysis and molecular distillation.
    Solaesa ÁG; Sanz MT; Falkeborg M; Beltrán S; Guo Z
    Food Chem; 2016 Jan; 190():960-967. PubMed ID: 26213062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candida antarctica lipase A effectively concentrates DHA from fish and thraustochytrid oils.
    Akanbi TO; Barrow CJ
    Food Chem; 2017 Aug; 229():509-516. PubMed ID: 28372209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic Analysis of Positional Fatty Acid Distributions in Triacylglycerols by 1(3)-Selective Transesterification with Candida antarctica Lipase B: a Collaborative Study.
    Watanabe Y; Sato S; Asada M; Arishima T; Iida Y; Imagi J; Saito K; Sano T; Sasaki A; Sasaki R; Sato C; Shibuya T; Tsukahara Y; Nagai T; Fukazawa T; Hori R; Homma R; Miyazaki Y; Yamashita A; Yoshinaga K; Watanabe S
    J Oleo Sci; 2015; 64(11):1193-205. PubMed ID: 26521812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and concentration of 2-monoacylglycerols rich in polyunsaturated fatty acids.
    Zhang Y; Wang X; Xie D; Zou S; Jin Q; Wang X
    Food Chem; 2018 Jun; 250():60-66. PubMed ID: 29412928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidolysis and glyceride synthesis reactions using fatty acids with two Pseudomonas lipases having different substrate specificities.
    Kojima Y; Sakuradani E; Shimizu S
    J Biosci Bioeng; 2006 Sep; 102(3):179-83. PubMed ID: 17046530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of monoacylglycerols and diacylglycerols rich in polyunsaturated fatty acids produced by hydrolysis of Musteleus mustelus liver oil catalyzed by an immobilized bacterial lipase.
    Zarai Z; Eddehech A; Rigano F; Oteri M; Micalizzi G; Dugo P; Mondello L; Cacciola F
    J Chromatogr A; 2020 Feb; 1613():460692. PubMed ID: 31753481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.
    Kamal MZ; Barrow CJ; Rao NM
    Food Chem; 2015 Apr; 173():1030-6. PubMed ID: 25466121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of FAME and FAEE via Alcoholysis of Sunflower Oil by Eversa Lipases Immobilized on Hydrophobic Supports.
    Remonatto D; de Oliveira JV; Manuel Guisan J; de Oliveira D; Ninow J; Fernandez-Lorente G
    Appl Biochem Biotechnol; 2018 Jul; 185(3):705-716. PubMed ID: 29297136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination against diacylglycerol ethers in lipase-catalysed ethanolysis of shark liver oil.
    Fernández Ó; Vázquez L; Reglero G; Torres CF
    Food Chem; 2013 Jan; 136(2):464-71. PubMed ID: 23122085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of Eversa Lipases on Hydrophobic Supports for Ethanolysis of Sunflower Oil Solvent-Free.
    Remonatto D; Oliveira JV; Guisan JM; Oliveira D; Ninow J; Fernandez-Lorente G
    Appl Biochem Biotechnol; 2022 May; 194(5):2151-2167. PubMed ID: 35050455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipase-catalyzed selective enrichment of omega-3 polyunsaturated fatty acids in acylglycerols of cod liver and linseed oils: Modeling the binding affinity of lipases and fatty acids.
    Chen Y; Cheong LZ; Zhao J; Panpipat W; Wang Z; Li Y; Lu C; Zhou J; Su X
    Int J Biol Macromol; 2019 Feb; 123():261-268. PubMed ID: 30423396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of 2-docosahexaenoylglycerol by enzymatic ethanolysis.
    Zhang Y; Wang X; Zou S; Xie D; Jin Q; Wang X
    Bioresour Technol; 2018 Mar; 251():334-340. PubMed ID: 29289878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipase-Catalyzed Transesterification of Egg-Yolk Phophatidylcholine with Concentrate of n-3 Polyunsaturated Fatty Acids from Cod Liver Oil.
    Chojnacka A; Gładkowski W; Grudniewska A
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29048366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of n-3 polyunsaturated fatty acids as oxime esters: a novel approach for their exclusive incorporation into the primary alcoholic positions of the glycerol moiety by lipase.
    Magnusson CD; Haraldsson GG
    Chem Phys Lipids; 2012 Oct; 165(7):712-20. PubMed ID: 22850592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.