BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 27840105)

  • 1. Live Imaging of Axolotl Digit Regeneration Reveals Spatiotemporal Choreography of Diverse Connective Tissue Progenitor Pools.
    Currie JD; Kawaguchi A; Traspas RM; Schuez M; Chara O; Tanaka EM
    Dev Cell; 2016 Nov; 39(4):411-423. PubMed ID: 27840105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurotrophic regulation of fibroblast dedifferentiation during limb skeletal regeneration in the axolotl (Ambystoma mexicanum).
    Satoh A; Cummings GM; Bryant SV; Gardiner DM
    Dev Biol; 2010 Jan; 337(2):444-57. PubMed ID: 19944088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dermal fibroblasts contribute to multiple tissues in the accessory limb model.
    Hirata A; Gardiner DM; Satoh A
    Dev Growth Differ; 2010 May; 52(4):343-50. PubMed ID: 20148925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle and connective tissue progenitor populations show distinct Twist1 and Twist3 expression profiles during axolotl limb regeneration.
    Kragl M; Roensch K; Nüsslein I; Tazaki A; Taniguchi Y; Tarui H; Hayashi T; Agata K; Tanaka EM
    Dev Biol; 2013 Jan; 373(1):196-204. PubMed ID: 23103585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular contribution from dermis and cartilage to the regenerating limb blastema in axolotls.
    Muneoka K; Fox WF; Bryant SV
    Dev Biol; 1986 Jul; 116(1):256-60. PubMed ID: 3732605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nerve independent limb induction in axolotls.
    Makanae A; Hirata A; Honjo Y; Mitogawa K; Satoh A
    Dev Biol; 2013 Sep; 381(1):213-26. PubMed ID: 23769980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species.
    Sandoval-Guzmán T; Wang H; Khattak S; Schuez M; Roensch K; Nacu E; Tazaki A; Joven A; Tanaka EM; Simon A
    Cell Stem Cell; 2014 Feb; 14(2):174-87. PubMed ID: 24268695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs.
    McCusker CD; Diaz-Castillo C; Sosnik J; Q Phan A; Gardiner DM
    Dev Biol; 2016 Aug; 416(1):26-33. PubMed ID: 27316294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution.
    Leigh ND; Dunlap GS; Johnson K; Mariano R; Oshiro R; Wong AY; Bryant DM; Miller BM; Ratner A; Chen A; Ye WW; Haas BJ; Whited JL
    Nat Commun; 2018 Dec; 9(1):5153. PubMed ID: 30514844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beryllium nitrate inhibits fibroblast migration to disrupt epimorphic regeneration.
    Cook AB; Seifert AW
    Development; 2016 Oct; 143(19):3491-3505. PubMed ID: 27578793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of dermal fibroblast dedifferentiation and redifferentiation during wound healing and limb regeneration in the Axolotl.
    Satoh A; Bryant SV; Gardiner DM
    Dev Growth Differ; 2008 Dec; 50(9):743-54. PubMed ID: 19046162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The migration of dermal cells during blastema formation in axolotls.
    Gardiner DM; Muneoka K; Bryant SV
    Dev Biol; 1986 Dec; 118(2):488-93. PubMed ID: 3792618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Conserved MicroRNA Regulatory Circuit Is Differentially Controlled during Limb/Appendage Regeneration.
    King BL; Yin VP
    PLoS One; 2016; 11(6):e0157106. PubMed ID: 27355827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exogenous Vitamin D signaling alters skeletal patterning, differentiation, and tissue integration during limb regeneration in the axolotl.
    Vieira WA; Wells KM; Milgrom R; McCusker CD
    Mech Dev; 2018 Oct; 153():1-9. PubMed ID: 30096415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the expression and function of Wnt-5a and Wnt-5b in developing and regenerating axolotl (Ambystoma mexicanum) limbs.
    Ghosh S; Roy S; Séguin C; Bryant SV; Gardiner DM
    Dev Growth Differ; 2008 May; 50(4):289-97. PubMed ID: 18336582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blastema induction in aneurogenic state and Prrx-1 regulation by MMPs and FGFs in Ambystoma mexicanum limb regeneration.
    Satoh A; makanae A; Hirata A; Satou Y
    Dev Biol; 2011 Jul; 355(2):263-74. PubMed ID: 21539833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls.
    Lévesque M; Gatien S; Finnson K; Desmeules S; Villiard E; Pilote M; Philip A; Roy S
    PLoS One; 2007 Nov; 2(11):e1227. PubMed ID: 18043735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration.
    Farkas JE; Freitas PD; Bryant DM; Whited JL; Monaghan JR
    Development; 2016 Aug; 143(15):2724-31. PubMed ID: 27317805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of retinoic acid signaling in transgenic axolotls during limb development and regeneration.
    Monaghan JR; Maden M
    Dev Biol; 2012 Aug; 368(1):63-75. PubMed ID: 22627291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FGF, BMP, and RA signaling are sufficient for the induction of complete limb regeneration from non-regenerating wounds on Ambystoma mexicanum limbs.
    Vieira WA; Wells KM; Raymond MJ; De Souza L; Garcia E; McCusker CD
    Dev Biol; 2019 Jul; 451(2):146-157. PubMed ID: 31026439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.