These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27840159)

  • 1. Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabrication.
    Herranz-Blanco B; Ginestar E; Zhang H; Hirvonen J; Santos HA
    Int J Pharm; 2017 Jan; 516(1-2):100-105. PubMed ID: 27840159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth.
    Hamdallah SI; Zoqlam R; Erfle P; Blyth M; Alkilany AM; Dietzel A; Qi S
    Int J Pharm; 2020 Jun; 584():119408. PubMed ID: 32407942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional splitting microfluidics.
    Chen Y; Gao W; Zhang C; Zhao Y
    Lab Chip; 2016 Apr; 16(8):1332-9. PubMed ID: 27030216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions.
    Leister N; Vladisavljević GT; Karbstein HP
    J Colloid Interface Sci; 2022 Apr; 611():451-461. PubMed ID: 34968964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications.
    Feng Q; Sun J; Jiang X
    Nanoscale; 2016 Jul; 8(25):12430-43. PubMed ID: 26864887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic platform for controlled synthesis of polymeric nanoparticles.
    Karnik R; Gu F; Basto P; Cannizzaro C; Dean L; Kyei-Manu W; Langer R; Farokhzad OC
    Nano Lett; 2008 Sep; 8(9):2906-12. PubMed ID: 18656990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple and cheap microfluidic devices for the preparation of monodisperse emulsions.
    Deng NN; Meng ZJ; Xie R; Ju XJ; Mou CL; Wang W; Chu LY
    Lab Chip; 2011 Dec; 11(23):3963-9. PubMed ID: 22025190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery.
    Vladisavljević GT; Khalid N; Neves MA; Kuroiwa T; Nakajima M; Uemura K; Ichikawa S; Kobayashi I
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1626-63. PubMed ID: 23899864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic chip using phenol formaldehyde resin for uniform-sized polycaprolactone and chitosan microparticle generation.
    Lin YS; Yang CH; Wu CT; Grumezescu AM; Wang CY; Hsieh WC; Chen SY; Huang KS
    Molecules; 2013 Jun; 18(6):6521-31. PubMed ID: 23736788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encoding Microreactors with Droplet Chains in Microfluidics.
    Song W; Lin G; Ge J; Fassbender J; Makarov D
    ACS Sens; 2017 Dec; 2(12):1839-1846. PubMed ID: 29183119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancements in microfluidics for nanoparticle separation.
    Salafi T; Zeming KK; Zhang Y
    Lab Chip; 2016 Dec; 17(1):11-33. PubMed ID: 27830852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomotor-Derived Porous Biomedical Particles from Droplet Microfluidics.
    Liu Y; Cheng Y; Zhao C; Wang H; Zhao Y
    Adv Sci (Weinh); 2022 Feb; 9(4):e2104272. PubMed ID: 34816629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emulsion Designer Using Microfluidic Three-Dimensional Droplet Printing in Droplet.
    Chen L; Xiao Y; Wu Q; Yan X; Zhao P; Ruan J; Shan J; Chen D; Weitz DA; Ye F
    Small; 2021 Oct; 17(39):e2102579. PubMed ID: 34390183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A plug-and-play modular microcapillary platform for the generation of multicompartmental double emulsions using glass or fluorocarbon capillaries.
    Farley S; Ramsay K; Elvira KS
    Lab Chip; 2021 Jul; 21(14):2781-2790. PubMed ID: 34105568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip microfluidic production of cell-sized liposomes.
    Deshpande S; Dekker C
    Nat Protoc; 2018 May; 13(5):856-874. PubMed ID: 29599442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of nanoparticle drug delivery systems with microfluidics tools.
    Khan IU; Serra CA; Anton N; Vandamme TF
    Expert Opin Drug Deliv; 2015 Apr; 12(4):547-62. PubMed ID: 25345543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospectives and retrospectives of microfluidics devices and lab-on-A-chip emphasis on cancer.
    Venkatesalu S; Dilliyappan S; Satish Kumar A; Palaniyandi T; Baskar G; Ravi M; Sivaji A
    Clin Chim Acta; 2024 Jan; 552():117646. PubMed ID: 38000458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics.
    Wang JT; Wang J; Han JJ
    Small; 2011 Jul; 7(13):1728-54. PubMed ID: 21618428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of composite poly(d,l-lactide)/montmorillonite nanoparticles for controlled delivery of acetaminophen by solvent-displacement method using glass capillary microfluidics.
    Othman R; Vladisavljević GT; Thomas NL; Nagy ZK
    Colloids Surf B Biointerfaces; 2016 May; 141():187-195. PubMed ID: 26852102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic-assisted nanoprecipitation of (PEGylated) poly (d,l-lactic acid-co-caprolactone): Effect of macromolecular and microfluidic parameters on particle size and paclitaxel encapsulation.
    Lallana E; Donno R; Magrì D; Barker K; Nazir Z; Treacher K; Lawrence MJ; Ashford M; Tirelli N
    Int J Pharm; 2018 Sep; 548(1):530-539. PubMed ID: 30009983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.