These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27840341)

  • 41. Outdoor environment management through air enthalpy analysis.
    Campos FS; Sarnighausen VCR; Dos Santos Riccardi C
    Int J Biometeorol; 2019 Nov; 63(11):1525-1532. PubMed ID: 30747321
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The specific enthalpy of air as an indicator of heat stress in livestock animals.
    de Castro Júnior SL; Silva IJOD
    Int J Biometeorol; 2021 Feb; 65(2):149-161. PubMed ID: 32968875
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of women's heat risk profiles among those working in indoor and outdoor sectors.
    Shanmugam R; Latha PK; Venugopal V
    Arch Environ Occup Health; 2023; 78(6):357-368. PubMed ID: 37881951
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The efficacy of radiant heat controls on workers' heat stress around the blast furnace of a steel industry.
    Giahi O; Darvishi E; Aliabadi M; Khoubi J
    Work; 2015; 53(2):293-8. PubMed ID: 26409350
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Critical body temperature profile as indicator of heat stress vulnerability.
    Nag PK; Dutta P; Nag A
    Ind Health; 2013; 51(1):113-22. PubMed ID: 23411761
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An advanced empirical model for quantifying the impact of heat and climate change on human physical work capacity.
    Foster J; Smallcombe JW; Hodder S; Jay O; Flouris AD; Nybo L; Havenith G
    Int J Biometeorol; 2021 Jul; 65(7):1215-1229. PubMed ID: 33674931
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Occupational health impacts of climate change: current and future ISO standards for the assessment of heat stress.
    Parsons K
    Ind Health; 2013; 51(1):86-100. PubMed ID: 23411759
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling heat stress changes based on wet-bulb globe temperature in respect to global warming.
    Nassiri P; Monazzam MR; Golbabaei F; Farhang Dehghan S; Shamsipour A; Ghanadzadeh MJ; Asghari M
    J Environ Health Sci Eng; 2020 Dec; 18(2):441-450. PubMed ID: 33312573
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermal Exposure and Heat Illness Symptoms among Workers in Mara Gold Mine, Tanzania.
    Meshi EB; Kishinhi SS; Mamuya SH; Rusibamayila MG
    Ann Glob Health; 2018 Aug; 84(3):360-368. PubMed ID: 30835389
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Performances of Limited Area Models for the WORKLIMATE Heat-Health Warning System to Protect Worker's Health and Productivity in Italy.
    Grifoni D; Messeri A; Crisci A; Bonafede M; Pasi F; Gozzini B; Orlandini S; Marinaccio A; Mari R; Morabito M; On Behalf Of The Worklimate Collaborative Group
    Int J Environ Res Public Health; 2021 Sep; 18(18):. PubMed ID: 34574860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of continuous hot weather training on risk of exertional heat illness.
    Wallace RF; Kriebel D; Punnett L; Wegman DH; Wenger CB; Gardner JW; Gonzalez RR
    Med Sci Sports Exerc; 2005 Jan; 37(1):84-90. PubMed ID: 15632673
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Continuing the search for WBGT clothing adjustment factors.
    O'Connor DJ; Bernard TE
    Appl Occup Environ Hyg; 1999 Feb; 14(2):119-25. PubMed ID: 10457638
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of heat stress on thermal balance, hydration and cortical response among outdoor workers in hot environment - an exploratory report from North East India.
    Srinivasan K; Boulton CG; Bhattacharjee M; Sinha A; Loganathan S; Seethy A; Alam SM; Hanse B
    J Basic Clin Physiol Pharmacol; 2024 Jan; 35(1-2):79-84. PubMed ID: 38468505
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mapping occupational heat exposure and effects in South-East Asia: ongoing time trends 1980-2011 and future estimates to 2050.
    Kjellstrom T; Lemke B; Otto M
    Ind Health; 2013; 51(1):56-67. PubMed ID: 23411757
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On the problems related to natural wet bulb temperature indirect evaluation for the assessment of hot thermal environments by means of WBGT.
    D'Ambrosio Alfano FR; Palella BI; Riccio G
    Ann Occup Hyg; 2012 Nov; 56(9):1063-79. PubMed ID: 22805751
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prevalence of hot weather conditions related to sports participation guidelines: a South Australian investigation.
    Grimmer K; King E; Larsen T; Farquharson T; Potter A; Sharpe P; de Wit H
    J Sci Med Sport; 2006 May; 9(1-2):72-80. PubMed ID: 16597512
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of heat stress on hematological parameters and oxidative stress among bakery workers.
    Gharibi V; Khanjani N; Heidari H; Ebrahimi MH; Hosseinabadi MB
    Toxicol Ind Health; 2020 Jan; 36(1):1-10. PubMed ID: 31934822
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The heat exposure risk to outdoor workers in Brazil.
    Pires Bitencourt D; Alves Maia P; Cauduro Roscani R
    Arch Environ Occup Health; 2020; 75(5):281-288. PubMed ID: 31258055
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Criteria for assessing severely hot environments: from the WBGT index to the PHS (predicted heat strain) model].
    d'Ambrosio FR; Palella BI; Riccio G; Alfano G
    Med Lav; 2004; 95(4):255-74. PubMed ID: 15532959
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ambient heat stress and urolithiasis attacks in China: Implication for climate change.
    Zhou L; Chen R; He C; Liu C; Lei J; Zhu Y; Gao Y; Kan H; Xuan J
    Environ Res; 2023 Jan; 217():114850. PubMed ID: 36427640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.