These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 27840400)
41. Metabolic engineering of an acid-tolerant yeast strain Sun W; Vila-Santa A; Liu N; Prozorov T; Xie D; Faria NT; Ferreira FC; Mira NP; Shao Z Metab Eng Commun; 2020 Jun; 10():e00124. PubMed ID: 32346511 [TBL] [Abstract][Full Text] [Related]
42. Microvinification--how small can we go? Liccioli T; Tran TM; Cozzolino D; Jiranek V; Chambers PJ; Schmidt SA Appl Microbiol Biotechnol; 2011 Mar; 89(5):1621-8. PubMed ID: 21076919 [TBL] [Abstract][Full Text] [Related]
43. Itaconic and Fumaric Acid Production from Biomass Hydrolysates by Aspergillus Strains. Jiménez-Quero A; Pollet E; Zhao M; Marchioni E; Avérous L; Phalip V J Microbiol Biotechnol; 2016 Sep; 26(9):1557-65. PubMed ID: 27291673 [TBL] [Abstract][Full Text] [Related]
44. Effect of various process parameters on morphology, rheology, and polygalacturonase production by Aspergillus sojae in a batch bioreactor. Oncu S; Tari C; Unluturk S Biotechnol Prog; 2007; 23(4):836-45. PubMed ID: 17585778 [TBL] [Abstract][Full Text] [Related]
45. Microtiter miniature shaken bioreactor system as a scale-down model for process development of production of therapeutic alpha-interferon2b by recombinant Escherichia coli. Tan JS; Abbasiliasi S; Kadkhodaei S; Tam YJ; Tang TK; Lee YY; Ariff AB BMC Microbiol; 2018 Jan; 18(1):3. PubMed ID: 29439680 [TBL] [Abstract][Full Text] [Related]
46. Influence of agitation speed on tannase production and morphology of Aspergillus niger FETL FT3 in submerged fermentation. Darah I; Sumathi G; Jain K; Lim SH Appl Biochem Biotechnol; 2011 Dec; 165(7-8):1682-90. PubMed ID: 21947762 [TBL] [Abstract][Full Text] [Related]
47. Effects of agitation intensity on mycelial morphology and protein production in chemostat cultures of recombinant Aspergillus oryzae. Amanullah A; Blair R; Nienow AW; Thomas CR Biotechnol Bioeng; 1999 Feb; 62(4):434-446. PubMed ID: 10099554 [TBL] [Abstract][Full Text] [Related]
48. Fungal Fermentation of Lignocellulosic Biomass for Itaconic and Fumaric Acid Production. Jiménez-Quero A; Pollet E; Zhao M; Marchioni E; Averous L; Phalip V J Microbiol Biotechnol; 2017 Jan; 27(1):1-8. PubMed ID: 27666988 [TBL] [Abstract][Full Text] [Related]
49. Development of an itaconic acid production process with Ustilaginaceae on alternative feedstocks. Niehoff PJ; Müller W; Pastoors J; Miebach K; Ernst P; Hemmerich J; Noack S; Wierckx N; Büchs J BMC Biotechnol; 2023 Sep; 23(1):34. PubMed ID: 37661280 [TBL] [Abstract][Full Text] [Related]
50. Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Losen M; Frölich B; Pohl M; Büchs J Biotechnol Prog; 2004; 20(4):1062-8. PubMed ID: 15296430 [TBL] [Abstract][Full Text] [Related]
51. Fermentation in 24-well plates is an efficient screening platform for filamentous fungi. Linde T; Hansen NB; Lübeck M; Lübeck PS Lett Appl Microbiol; 2014 Aug; 59(2):224-30. PubMed ID: 24725208 [TBL] [Abstract][Full Text] [Related]
52. Itaconic Acid Production by Filamentous Fungi in Starch-Rich Industrial Residues. Bafana R; Sivanesan S; Pandey RA Indian J Microbiol; 2017 Sep; 57(3):322-328. PubMed ID: 28904417 [TBL] [Abstract][Full Text] [Related]
53. Improving the yield of (+)-terrein from the salt-tolerant Aspergillus terreus PT06-2. Zhao C; Guo L; Wang L; Zhu G; Zhu W World J Microbiol Biotechnol; 2016 May; 32(5):77. PubMed ID: 27038947 [TBL] [Abstract][Full Text] [Related]
54. A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Li A; van Luijk N; ter Beek M; Caspers M; Punt P; van der Werf M Fungal Genet Biol; 2011 Jun; 48(6):602-11. PubMed ID: 21324422 [TBL] [Abstract][Full Text] [Related]
55. Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology. Papagianni M; Mattey M Microb Cell Fact; 2006 Jan; 5():3. PubMed ID: 16433930 [TBL] [Abstract][Full Text] [Related]
56. Draft Genome Sequence of Aspergillus terreus High-Itaconic-Acid-Productivity Mutant TN-484. Kanamasa S; Minami T; Okabe M; Park EY; Fujimoto T; Takahashi A; Murase M; Fukuyoshi S; Oda A; Satou K; Takahashi H Microbiol Resour Announc; 2019 Dec; 8(49):. PubMed ID: 31806745 [TBL] [Abstract][Full Text] [Related]
58. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Okabe M; Lies D; Kanamasa S; Park EY Appl Microbiol Biotechnol; 2009 Sep; 84(4):597-606. PubMed ID: 19629471 [TBL] [Abstract][Full Text] [Related]
59. Draft Genome Sequence of the Aspergillus terreus High-Itaconic-Acid-Productivity Strain IFO6365. Takahashi H; Minami T; Okabe M; Park EY; Fujimoto T; Takahashi A; Murase M; Fukuyoshi S; Satou K; Kanamasa S Microbiol Resour Announc; 2020 Apr; 9(16):. PubMed ID: 32299870 [TBL] [Abstract][Full Text] [Related]
60. Production of lovastatin by wild strains of Aspergillus terreus. Patil RH; Krishnan P; Maheshwari VL Nat Prod Commun; 2011 Feb; 6(2):183-6. PubMed ID: 21425670 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]