These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 27840866)
1. Gd Zhang K; Cao Y; Kuang Y; Liu M; Chen Y; Wang Z; Hong S; Wang J; Pei R Biomater Sci; 2016 Dec; 5(1):46-49. PubMed ID: 27840866 [TBL] [Abstract][Full Text] [Related]
2. Tumor-specific design of PEGylated gadolinium-based nanoscale particles: Facile synthesis, characterization, and improved magnetic resonance imaging of metastasis lung cancer. Sui Y; Li Y; Li Y; Jin H; Zheng Y; Huang W; Chen S J Photochem Photobiol B; 2020 Jan; 202():111669. PubMed ID: 31739258 [TBL] [Abstract][Full Text] [Related]
3. Gadolinium (III) oxide nanoparticles coated with folic acid-functionalized poly(β-cyclodextrin-co-pentetic acid) as a biocompatible targeted nano-contrast agent for cancer diagnostic: in vitro and in vivo studies. Mortezazadeh T; Gholibegloo E; Alam NR; Dehghani S; Haghgoo S; Ghanaati H; Khoobi M MAGMA; 2019 Aug; 32(4):487-500. PubMed ID: 30730021 [TBL] [Abstract][Full Text] [Related]
4. Gadolinium oxide nanoparticles and aptamer-functionalized silver nanoclusters-based multimodal molecular imaging nanoprobe for optical/magnetic resonance cancer cell imaging. Li J; You J; Dai Y; Shi M; Han C; Xu K Anal Chem; 2014 Nov; 86(22):11306-11. PubMed ID: 25338209 [TBL] [Abstract][Full Text] [Related]
5. Geometrical Confinement of Gadolinium Oxide Nanoparticles in Poly(ethylene glycol)/Arginylglycylaspartic Acid-Modified Mesoporous Carbon Nanospheres as an Enhanced T Kuang Y; Cao Y; Liu M; Zu G; Zhang Y; Zhang Y; Pei R ACS Appl Mater Interfaces; 2018 Aug; 10(31):26099-26107. PubMed ID: 30016059 [TBL] [Abstract][Full Text] [Related]
6. Gastrin-releasing peptide receptor-targeted gadolinium oxide-based multifunctional nanoparticles for dual magnetic resonance/fluorescent molecular imaging of prostate cancer. Cui D; Lu X; Yan C; Liu X; Hou M; Xia Q; Xu Y; Liu R Int J Nanomedicine; 2017; 12():6787-6797. PubMed ID: 28979118 [TBL] [Abstract][Full Text] [Related]
7. pH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd He K; Li J; Shen Y; Yu Y J Mater Chem B; 2019 Nov; 7(43):6840-6854. PubMed ID: 31609370 [TBL] [Abstract][Full Text] [Related]
8. Encapsulation of Gadolinium Oxide Nanoparticle (Gd Mekuria SL; Debele TA; Tsai HC ACS Appl Mater Interfaces; 2017 Mar; 9(8):6782-6795. PubMed ID: 28164704 [TBL] [Abstract][Full Text] [Related]
9. Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. Bridot JL; Faure AC; Laurent S; Rivière C; Billotey C; Hiba B; Janier M; Josserand V; Coll JL; Elst LV; Muller R; Roux S; Perriat P; Tillement O J Am Chem Soc; 2007 Apr; 129(16):5076-84. PubMed ID: 17397154 [TBL] [Abstract][Full Text] [Related]
10. Ligand-free gadolinium oxide for in vivo T1-weighted magnetic resonance imaging. Luo N; Tian X; Yang C; Xiao J; Hu W; Chen D; Li L Phys Chem Chem Phys; 2013 Aug; 15(29):12235-40. PubMed ID: 23771105 [TBL] [Abstract][Full Text] [Related]
11. Ligand-size dependent water proton relaxivities in ultrasmall gadolinium oxide nanoparticles and in vivo T1 MR images in a 1.5 T MR field. Kim CR; Baeck JS; Chang Y; Bae JE; Chae KS; Lee GH Phys Chem Chem Phys; 2014 Oct; 16(37):19866-73. PubMed ID: 25123195 [TBL] [Abstract][Full Text] [Related]
12. Activatable molecular MRI nanoprobe for tumor cell imaging based on gadolinium oxide and iron oxide nanoparticle. Li J; Wang S; Wu C; Dai Y; Hou P; Han C; Xu K Biosens Bioelectron; 2016 Dec; 86():1047-1053. PubMed ID: 27501342 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Ahrén M; Selegård L; Klasson A; Söderlind F; Abrikossova N; Skoglund C; Bengtsson T; Engström M; Käll PO; Uvdal K Langmuir; 2010 Apr; 26(8):5753-62. PubMed ID: 20334417 [TBL] [Abstract][Full Text] [Related]
14. Tumor-Targeted and Clearable Human Protein-Based MRI Nanoprobes. Zhao Y; Peng J; Li J; Huang L; Yang J; Huang K; Li H; Jiang N; Zheng S; Zhang X; Niu Y; Han G Nano Lett; 2017 Jul; 17(7):4096-4100. PubMed ID: 28581764 [TBL] [Abstract][Full Text] [Related]
15. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Klasson A; Ahrén M; Hellqvist E; Söderlind F; Rosén A; Käll PO; Uvdal K; Engström M Contrast Media Mol Imaging; 2008; 3(3):106-11. PubMed ID: 18546094 [TBL] [Abstract][Full Text] [Related]
16. Tuning the relaxation rates of dual-mode T(1)/T(2) nanoparticle contrast agents: a study into the ideal system. Keasberry NA; Bañobre-López M; Wood C; Stasiuk GJ; Gallo J; Long NJ Nanoscale; 2015 Oct; 7(38):16119-28. PubMed ID: 26371437 [TBL] [Abstract][Full Text] [Related]
17. Comparative toxicity and contrast enhancing assessments of Gd Zhang H; Wang T; Zheng Y; Yan C; Gu W; Ye L Biochem Biophys Res Commun; 2018 May; 499(3):488-492. PubMed ID: 29580992 [TBL] [Abstract][Full Text] [Related]
18. Terbium-doped gadolinium oxide nanoparticles prepared by laser ablation in liquid for use as a fluorescence and magnetic resonance imaging dual-modal contrast agent. Chen F; Chen M; Yang C; Liu J; Luo N; Yang G; Chen D; Li L Phys Chem Chem Phys; 2015 Jan; 17(2):1189-96. PubMed ID: 25418675 [TBL] [Abstract][Full Text] [Related]
19. Gadolinium-based nanoparticles for highly efficient T1-weighted magnetic resonance imaging. Lim EK; Kang B; Choi Y; Jang E; Han S; Lee K; Suh JS; Haam S; Huh YM Nanotechnology; 2014 Jun; 25(24):245103. PubMed ID: 24872113 [TBL] [Abstract][Full Text] [Related]