These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27840880)

  • 1. Dual absorption spectral changes by light-triggered shuttling in bistable [2]rotaxanes with non-destructive readout.
    Zhan TG; Yun MY; Lin JL; Yu XY; Zhang KD
    Chem Commun (Camb); 2016 Dec; 52(98):14085-14088. PubMed ID: 27840880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast dynamics of an azobenzene-containing molecular shuttle based on a rotaxane.
    Sartin MM; Osawa M; Takeuchi S; Tahara T
    Chem Commun (Camb); 2022 Jan; 58(7):961-964. PubMed ID: 34935779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects on Rotational Dynamics of Azo and Hydrazodicarboxamide-Based Rotaxanes.
    Saura-Sanmartin A; Martinez-Espin JS; Martinez-Cuezva A; Alajarin M; Berna J
    Molecules; 2017 Jun; 22(7):. PubMed ID: 28657603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-switchable Janus [2]rotaxanes based on α-cyclodextrin derivatives bearing two recognition sites linked with oligo(ethylene glycol).
    Li S; Taura D; Hashidzume A; Harada A
    Chem Asian J; 2010 Oct; 5(10):2281-9. PubMed ID: 20669215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. trans/cis-Isomerization of fluorene-bridged azo chromophore with significant two-photon absorbability at near-infrared wavelength.
    Chu CC; Chang YC; Tsai BK; Lin TC; Lin JH; Hsiao VK
    Chem Asian J; 2014 Dec; 9(12):3390-6. PubMed ID: 25294108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular shuttles based on tetrathiafulvalene units and 1,5-dioxynaphthalene ring systems.
    Kang S; Vignon SA; Tseng HR; Stoddart JF
    Chemistry; 2004 May; 10(10):2555-64. PubMed ID: 15146527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Triggered dethreading-rethreading and switching of cucurbit[6]uril on bistable [3]pseudorotaxanes and [3]rotaxanes.
    Tuncel D; Katterle M
    Chemistry; 2008; 14(13):4110-6. PubMed ID: 18348131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating the Shuttling in Hydrogen-Bonded Rotaxanes: Active Role of the Axle and the End Station.
    Kumpulainen T; Panman MR; Bakker BH; Hilbers M; Woutersen S; Brouwer AM
    J Am Chem Soc; 2019 Dec; 141(48):19118-19129. PubMed ID: 31697078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In the twilight zone between [2]pseudorotaxanes and [2]rotaxanes.
    Jeppesen JO; Vignon SA; Stoddart JF
    Chemistry; 2003 Oct; 9(19):4611-25. PubMed ID: 14566866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse shuttling in a fullerene-stoppered rotaxane.
    Mateo-Alonso A; Fioravanti G; Marcaccio M; Paolucci F; Jagesar DC; Brouwer AM; Prato M
    Org Lett; 2006 Oct; 8(22):5173-6. PubMed ID: 17048871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unidirectional threading synthesis of isomer-free [2]rotaxanes.
    Wang QC; Ma X; Qu DH; Tian H
    Chemistry; 2006 Jan; 12(4):1088-96. PubMed ID: 16245374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organogel formation by a cholesterol-stoppered bistable [2]rotaxane and its dumbbell precursor.
    Zhao YL; Aprahamian I; Trabolsi A; Erina N; Stoddart JF
    J Am Chem Soc; 2008 May; 130(20):6348-50. PubMed ID: 18444642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Counterion-induced translational isomerism in a bistable [2]rotaxane.
    Laursen BW; Nygaard S; Jeppesen JO; Stoddart JF
    Org Lett; 2004 Nov; 6(23):4167-70. PubMed ID: 15524434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoresponsive supramolecular complexes as efficient DNA regulator.
    Cheng HB; Zhang YM; Xu C; Liu Y
    Sci Rep; 2014 Feb; 4():4210. PubMed ID: 24572680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azodicarboxamides as template binding motifs for the building of hydrogen-bonded molecular shuttles.
    Berná J; Alajarín M; Orenes RA
    J Am Chem Soc; 2010 Aug; 132(31):10741-7. PubMed ID: 20681706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV-vis, IR and 1H NMR spectroscopic studies of some mono- and bis-azo-compounds based on 2,7-dihydroxynaphthalene and aniline derivatives.
    Issa RM; Fayed TA; Awad MK; El-Kony SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Dec; 62(4-5):980-6. PubMed ID: 15951233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic barriers in rotaxanes and pseudorotaxanes.
    Hmadeh M; Fahrenbach AC; Basu S; Trabolsi A; Benítez D; Li H; Albrecht-Gary AM; Elhabiri M; Stoddart JF
    Chemistry; 2011 May; 17(22):6076-87. PubMed ID: 21500290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer in the azobenzene-naphthalene light harvesting system.
    Abdallah D; Whelan J; Dust JM; Hoz S; Buncel E
    J Phys Chem A; 2009 Jun; 113(24):6640-7. PubMed ID: 19456113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable donor-acceptor neutral [2]rotaxanes.
    Iijima T; Vignon SA; Tseng HR; Jarrosson T; Sanders JK; Marchioni F; Venturi M; Apostoli E; Balzani V; Stoddart JF
    Chemistry; 2004 Dec; 10(24):6375-92. PubMed ID: 15532018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-Correlation NMR Spectroscopy for Macromolecules Using Repeated Bidirectional Photoisomerization of Azobenzene.
    Nagashima T; Ueda K; Nishimura C; Yamazaki T
    Anal Chem; 2015 Nov; 87(22):11544-52. PubMed ID: 26479462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.