These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27841162)

  • 1. Plasmonic control of extraordinary optical transmission in the infrared regime.
    Sangiao S; Freire F; de León-Pérez F; Rodrigo SG; De Teresa JM
    Nanotechnology; 2016 Dec; 27(50):505202. PubMed ID: 27841162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications.
    Sannomiya T; Scholder O; Jefimovs K; Hafner C; Dahlin AB
    Small; 2011 Jun; 7(12):1653-63. PubMed ID: 21520499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications.
    Yue W; Wang Z; Yang Y; Li J; Wu Y; Chen L; Ooi B; Wang X; Zhang XX
    Nanoscale; 2014 Jul; 6(14):7917-23. PubMed ID: 24898441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field localization of hexagonal and short-range ordered plasmonic nanoholes investigated by cathodoluminescence.
    Vu Thi D; Ohno T; Yamamoto N; Sannomiya T
    J Chem Phys; 2020 Feb; 152(7):074707. PubMed ID: 32087626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical properties of a nanosized hole in a thin metallic film.
    Park TH; Mirin N; Lassiter JB; Nehl CL; Halas NJ; Nordlander P
    ACS Nano; 2008 Jan; 2(1):25-32. PubMed ID: 19206544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons.
    Vallius T; Turunen J; Mansuripur M; Honkanen S
    J Opt Soc Am A Opt Image Sci Vis; 2004 Mar; 21(3):456-63. PubMed ID: 15005412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraordinary transmission of gold-capped sphere arrays in mid-infrared range.
    Thanh Tam HT; Kajikawa K
    Opt Express; 2021 Oct; 29(22):35191-35205. PubMed ID: 34808958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced infrared transmission through gold nanoslit arrays via surface plasmons in continuous graphene.
    Liu Z; Aydin K
    Opt Express; 2016 Nov; 24(24):27882-27889. PubMed ID: 27906356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraordinary mid-infrared transmission of subwavelength holes in gold films.
    Yue W; Wang Z; Yang Y; Chen L; Syed A; Wang X
    J Nanosci Nanotechnol; 2014 Apr; 14(4):3017-21. PubMed ID: 24734727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sub-wavelength energy concentration with electrically generated mid-infrared surface plasmons.
    Bousseksou A; Babuty A; Tetienne JP; Moldovan-Doyen I; Braive R; Beaudoin G; Sagnes I; De Wilde Y; Colombelli R
    Opt Express; 2012 Jun; 20(13):13738-47. PubMed ID: 22714439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films.
    Chang SH; Gray S; Schatz G
    Opt Express; 2005 Apr; 13(8):3150-65. PubMed ID: 19495214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrast between surface plasmon polariton-mediated extraordinary optical transmission behavior in epitaxial and polycrystalline Ag films in the mid- and far-infrared regimes.
    Li BH; Sanders CE; McIlhargey J; Cheng F; Gu C; Zhang G; Wu K; Kim J; Mousavi SH; Khanikaev AB; Lu YJ; Gwo S; Shvets G; Shih CK; Qiu X
    Nano Lett; 2012 Dec; 12(12):6187-91. PubMed ID: 23131144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission.
    van Beijnum F; Rétif C; Smiet CB; Liu H; Lalanne P; van Exter MP
    Nature; 2012 Dec; 492(7429):411-4. PubMed ID: 23257884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale patterning of plasmonic metamaterials.
    Henzie J; Lee MH; Odom TW
    Nat Nanotechnol; 2007 Sep; 2(9):549-54. PubMed ID: 18654366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraordinary Optical Transmission by Hybrid Phonon-Plasmon Polaritons Using hBN Embedded in Plasmonic Nanoslits.
    Ogawa S; Fukushima S; Shimatani M
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34198718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metallic Nanostructures for Multispectral Filters.
    Tang Y; Vlahovic B
    J Nanosci Nanotechnol; 2017 Jan; 17(1):573-76. PubMed ID: 29630181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced extraordinary optical transmission and refractive-index sensing sensitivity in tapered plasmonic nanohole arrays.
    Chen Z; Li P; Zhang S; Chen Y; Liu P; Duan H
    Nanotechnology; 2019 Aug; 30(33):335201. PubMed ID: 31013483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced fluorescence from arrays of nanoholes in a gold film.
    Brolo AG; Kwok SC; Moffitt MG; Gordon R; Riordon J; Kavanagh KL
    J Am Chem Soc; 2005 Oct; 127(42):14936-41. PubMed ID: 16231950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays.
    Marcet Z; Hang ZH; Chan CT; Kravchenko I; Bower JE; Cirelli RA; Klemens F; Mansfield WM; Miner JF; Pai CS; Chan HB
    Opt Lett; 2010 Jul; 35(13):2124-6. PubMed ID: 20596167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays.
    Najiminaini M; Vasefi F; Kaminska B; Carson JJ
    Opt Express; 2010 Oct; 18(21):22255-70. PubMed ID: 20941127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.