These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27841162)

  • 21. Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film.
    Gordon R; Marthandam P
    Opt Express; 2007 Oct; 15(20):12995-3002. PubMed ID: 19550569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theory of transmission of light by sub-wavelength cylindrical holes in metallic films.
    García N; Bai M
    Opt Express; 2006 Oct; 14(21):10028-42. PubMed ID: 19529397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The relationship between extraordinary optical transmission and surface-enhanced Raman scattering in subwavelength metallic nanohole arrays.
    Li Q; Yang Z; Ren B; Xu H; Tian Z
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7188-91. PubMed ID: 21137894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased cut-off wavelength for a subwavelength hole in a real metal.
    Gordon R; Brolo A
    Opt Express; 2005 Mar; 13(6):1933-8. PubMed ID: 19495075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Resonances in the Transmission of Surface Plasmon Polaritons between Nanostructures.
    Johns P; Yu K; Devadas MS; Hartland GV
    ACS Nano; 2016 Mar; 10(3):3375-81. PubMed ID: 26866536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring plasmonic coupling in hole-cap arrays.
    Schmidt TM; Frederiksen M; Bochenkov V; Sutherland DS
    Beilstein J Nanotechnol; 2015; 6():1-10. PubMed ID: 25671146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extraordinary optical transmission in silicon nanoholes.
    Mekawey H; Ismail Y; Swillam M
    Sci Rep; 2021 Nov; 11(1):21546. PubMed ID: 34732796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes.
    Koerkamp KJ; Enoch S; Segerink FB; van Hulst NF; Kuipers L
    Phys Rev Lett; 2004 May; 92(18):183901. PubMed ID: 15169489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions.
    Halté V; Benabbas A; Bigot JY
    Opt Express; 2008 Jul; 16(15):11611-7. PubMed ID: 18648482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface plasmon lasing observed in metal hole arrays.
    van Beijnum F; van Veldhoven PJ; Geluk EJ; de Dood MJ; 't Hooft GW; van Exter MP
    Phys Rev Lett; 2013 May; 110(20):206802. PubMed ID: 25167437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures.
    Thompson PG; Biris CG; Osley EJ; Gaathon O; Osgood RM; Panoiu NC; Warburton PA
    Opt Express; 2011 Dec; 19(25):25035-47. PubMed ID: 22273895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmon resonances in coupled Babinet complementary arrays in the mid-infrared range.
    Akinoglu GE; Akinoglu EM; Kempa K; Giersig M
    Opt Express; 2019 Aug; 27(16):22939-22950. PubMed ID: 31510578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of finite metallic grating size on Rayleigh anomaly-surface plasmon polariton resonances.
    Ren F; Kim KY; Chong X; Wang AX
    Opt Express; 2015 Nov; 23(22):28868-73. PubMed ID: 26561155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Propagation lengths of surface plasmon polaritons on metal films with arrays of subwavelength holes by infrared imaging spectroscopy.
    Cilwa KE; Rodriguez KR; Heer JM; Malone MA; Corwin LD; Coe JV
    J Chem Phys; 2009 Aug; 131(6):061101. PubMed ID: 19691370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. X-shaped quasi-3D plasmonic nanostructure arrays for enhancing electric field and Raman scattering.
    Wang D; Yu X; Yu Q
    Nanotechnology; 2012 Oct; 23(40):405201. PubMed ID: 22983626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aspect-ratio driven evolution of high-order resonant modes and near-field distributions in localized surface phonon polariton nanostructures.
    Ellis CT; Tischler JG; Glembocki OJ; Bezares FJ; Giles AJ; Kasica R; Shirey L; Owrutsky JC; Chigrin DN; Caldwell JD
    Sci Rep; 2016 Sep; 6():32959. PubMed ID: 27622525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of apexes on the resonance shift in double hole nanocavities.
    Iyer S; Popov S; Friberg AT
    Opt Express; 2010 Jan; 18(1):193-203. PubMed ID: 20173839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual-channel extraordinary ultraviolet transmission through an aluminum nanohole array.
    Hu J; Shen M; Li Z; Li X; Liu G; Wang X; Kan C; Li Y
    Nanotechnology; 2017 May; 28(21):215205. PubMed ID: 28358302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct fabrication and characterization of gold nanohole arrays.
    Mao F; Ngo GL; Nguyen CT; Ledoux-Rak I; Lai ND
    Opt Express; 2021 Sep; 29(19):29841-29856. PubMed ID: 34614721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.