These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 2784127)

  • 1. Field distributions in vertebral bodies of the rat during electrical stimulation: a parametric study.
    Carter EL; Vresilovic EJ; Pollack SR; Brighton CT
    IEEE Trans Biomed Eng; 1989 Mar; 36(3):333-45. PubMed ID: 2784127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical determination of the current density distributions in human vertebral bodies during electrical stimulation.
    Carter EL; Pollack SR; Brighton CT
    IEEE Trans Biomed Eng; 1990 Jun; 37(6):606-14. PubMed ID: 2354842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amelioration of oxygen-induced osteoporosis in the in vitro fetal rat tibia with a capacitively coupled electrical field.
    Brighton CT; Nichols CE; Arangio GA
    J Orthop Res; 1985; 3(3):311-20. PubMed ID: 2411895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field distributions in the rat tibia with and without a porous implant during electrical stimulation: a parametric modeling.
    Ducheyne P; Ellis LY; Pollack SR; Pienkowski D; Cuckler JM
    IEEE Trans Biomed Eng; 1992 Nov; 39(11):1168-78. PubMed ID: 1487280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of denervation/disuse osteoporosis in the rat with a capacitively coupled electrical signal: effects on bone formation and bone resorption.
    Brighton CT; Tadduni GT; Goll SR; Pollack SR
    J Orthop Res; 1988; 6(5):676-84. PubMed ID: 3261339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical alterations in intact osteoporotic spine due to synthetic augmentation: finite element investigation.
    Higgins KB; Sindall DR; Cuitino AM; Langrana NA
    J Biomech Eng; 2007 Aug; 129(4):575-85. PubMed ID: 17655479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo BMP-7 (OP-1) enhancement of osteoporotic vertebral bodies in an ovine model.
    Phillips FM; Turner AS; Seim HB; MacLeay J; Toth CA; Pierce AR; Wheeler DL
    Spine J; 2006; 6(5):500-6. PubMed ID: 16934718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for patient-specific evaluation of vertebral cancellous bone strength: in vitro validation.
    Diamant I; Shahar R; Masharawi Y; Gefen A
    Clin Biomech (Bristol, Avon); 2007 Mar; 22(3):282-91. PubMed ID: 17134802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Verification of the finite element method to model subthreshold electrical current density in saline.
    Waugaman WA
    Biomed Sci Instrum; 1999; 35():367-72. PubMed ID: 11143379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of factors influencing finite element vertebral model predictions.
    Jones AC; Wilcox RK
    J Biomech Eng; 2007 Dec; 129(6):898-903. PubMed ID: 18067394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Electrical stimulation in the treatment of osteoporosis in sciatic denervated rat tibia].
    Li M
    Zhonghua Wai Ke Za Zhi; 1992 Aug; 30(8):458-60, 508. PubMed ID: 1307307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased bone strength in HLA-B27 transgenic rat model of spondyloarthropathy.
    Akhter MP; Jung LK
    Rheumatology (Oxford); 2007 Aug; 46(8):1258-62. PubMed ID: 17526927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of castration-induced osteoporosis by a capacitively coupled electrical signal in rat vertebrae.
    Brighton CT; Luessenhop CP; Pollack SR; Steinberg DR; Petrik ME; Kaplan FS
    J Bone Joint Surg Am; 1989 Feb; 71(2):228-36. PubMed ID: 2783931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical current density model from surface electrodes.
    Waugaman WA
    Biomed Sci Instrum; 1997; 34():131-6. PubMed ID: 9603026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Maxwell's equations to the cable equation and beyond.
    Lindsay KA; Rosenberg JR; Tucker G
    Prog Biophys Mol Biol; 2004 May; 85(1):71-116. PubMed ID: 15050381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.
    Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN
    Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magneto-acousto-electrical tomography: a potential method for imaging current density and electrical impedance.
    Haider S; Hrbek A; Xu Y
    Physiol Meas; 2008 Jun; 29(6):S41-50. PubMed ID: 18544798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered bioreactivity and limited osteoconductivity of calcium sulfate-based bone cements in the osteoporotic rat spine.
    Wang ML; Massie J; Allen RT; Lee YP; Kim CW
    Spine J; 2008; 8(2):340-50. PubMed ID: 17983844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The boundary element method in the forward and inverse problem of electrical impedance tomography.
    de Munck JC; Faes TJ; Heethaar RM
    IEEE Trans Biomed Eng; 2000 Jun; 47(6):792-800. PubMed ID: 10833854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.