These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 27841337)

  • 1. An anomalous interlayer exciton in MoS
    Azhikodan D; Nautiyal T; Shallcross S; Sharma S
    Sci Rep; 2016 Nov; 6():37075. PubMed ID: 27841337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of interlayer interactions on exciton luminescence in atomic-layered MoS2 crystals.
    Kim JG; Yun WS; Jo S; Lee J; Cho CH
    Sci Rep; 2016 Jul; 6():29813. PubMed ID: 27416744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlayer excitons in bilayer MoS
    Niehues I; Blob A; Stiehm T; Michaelis de Vasconcellos S; Bratschitsch R
    Nanoscale; 2019 Jul; 11(27):12788-12792. PubMed ID: 31245801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic polaronic screening for anomalous exciton spin relaxation in two-dimensional lead halide perovskites.
    Tao W; Zhou Q; Zhu H
    Sci Adv; 2020 Nov; 6(47):. PubMed ID: 33219022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant Photoluminescence Enhancement and Carrier Dynamics in MoS
    Li H; Ma Y; Xu Z; Cheng X; Jiang T
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of van der Waals interaction and electric field on the electronic structure of bilayer MoS2.
    Xiao J; Long M; Li X; Zhang Q; Xu H; Chan KS
    J Phys Condens Matter; 2014 Oct; 26(40):405302. PubMed ID: 25224268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides.
    Arora A; Deilmann T; Marauhn P; Drüppel M; Schneider R; Molas MR; Vaclavkova D; Michaelis de Vasconcellos S; Rohlfing M; Potemski M; Bratschitsch R
    Nanoscale; 2018 Aug; 10(33):15571-15577. PubMed ID: 30090905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus.
    Yuan J; Najmaei S; Zhang Z; Zhang J; Lei S; M Ajayan P; Yakobson BI; Lou J
    ACS Nano; 2015 Jan; 9(1):555-63. PubMed ID: 25569715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure Dependence of Intra- and Interlayer Excitons in 2H-MoS
    Steeger P; Graalmann JH; Schmidt R; Kupenko I; Sanchez-Valle C; Marauhn P; Deilmann T; de Vasconcellos SM; Rohlfing M; Bratschitsch R
    Nano Lett; 2023 Oct; 23(19):8947-8952. PubMed ID: 37734032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous excitonic resonance Raman effects in few-layered MoS2.
    Lee JU; Park J; Son YW; Cheong H
    Nanoscale; 2015 Feb; 7(7):3229-36. PubMed ID: 25620555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures.
    Rivera P; Schaibley JR; Jones AM; Ross JS; Wu S; Aivazian G; Klement P; Seyler K; Clark G; Ghimire NJ; Yan J; Mandrus DG; Yao W; Xu X
    Nat Commun; 2015 Feb; 6():6242. PubMed ID: 25708612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple Screened Hydrogen Model of Excitons in Two-Dimensional Materials.
    Olsen T; Latini S; Rasmussen F; Thygesen KS
    Phys Rev Lett; 2016 Feb; 116(5):056401. PubMed ID: 26894722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors.
    Yuan L; Wang T; Zhu T; Zhou M; Huang L
    J Phys Chem Lett; 2017 Jul; 8(14):3371-3379. PubMed ID: 28661147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring Photoexcited Free Charge Carriers in Mono- to Few-Layer Transition-Metal Dichalcogenides with Steady-State Microwave Conductivity.
    Blackburn JL; Zhang H; Myers AR; Dunklin JR; Coffey DC; Hirsch RN; Vigil-Fowler D; Yun SJ; Cho BW; Lee YH; Miller EM; Rumbles G; Reid OG
    J Phys Chem Lett; 2020 Jan; 11(1):99-107. PubMed ID: 31790587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density-functional tight-binding simulations of curvature-controlled layer decoupling and band-gap tuning in bilayer MoS2.
    Koskinen P; Fampiou I; Ramasubramaniam A
    Phys Rev Lett; 2014 May; 112(18):186802. PubMed ID: 24856713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric-Field Switchable Second-Harmonic Generation in Bilayer MoS
    Klein J; Wierzbowski J; Steinhoff A; Florian M; Rösner M; Heimbach F; Müller K; Jahnke F; Wehling TO; Finley JJ; Kaniber M
    Nano Lett; 2017 Jan; 17(1):392-398. PubMed ID: 27959565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitons in monolayer transition metal dichalcogenides.
    Li J; Zhong YL; Zhang D
    J Phys Condens Matter; 2015 Aug; 27(31):315301. PubMed ID: 26190703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer-dependent optical conductivity in atomic thin WS₂ by reflection contrast spectroscopy.
    Nayak PK; Yeh CH; Chen YC; Chiu PW
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16020-6. PubMed ID: 25153193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite.
    Kobayashi Y; Sasaki S; Mori S; Hibino H; Liu Z; Watanabe K; Taniguchi T; Suenaga K; Maniwa Y; Miyata Y
    ACS Nano; 2015 Apr; 9(4):4056-63. PubMed ID: 25809222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.