These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 27841337)

  • 41. Charged impurity-tuning of midgap states in biased Bernal bilayer black phosphorus: an anisotropic electronic phase transition.
    Le PTT; Mirabbaszadeh K; Davoudiniya M; Yarmohammadi M
    Phys Chem Chem Phys; 2018 Oct; 20(38):25044-25051. PubMed ID: 30246825
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Valence Band Splitting on Multilayer MoS2: Mixing of Spin-Orbit Coupling and Interlayer Coupling.
    Fan X; Singh DJ; Zheng W
    J Phys Chem Lett; 2016 Jun; 7(12):2175-81. PubMed ID: 27225320
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Observation of biexcitonic emission at extremely low power density in tungsten disulfide atomic layers grown on hexagonal boron nitride.
    Okada M; Miyauchi Y; Matsuda K; Taniguchi T; Watanabe K; Shinohara H; Kitaura R
    Sci Rep; 2017 Mar; 7(1):322. PubMed ID: 28336931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrical control of the valley Hall effect in bilayer MoS2 transistors.
    Lee J; Mak KF; Shan J
    Nat Nanotechnol; 2016 May; 11(5):421-5. PubMed ID: 26809056
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Indirect-direct band gap transition through electric tuning in bilayer MoS2.
    Zhang ZY; Si MS; Wang YH; Gao XP; Sung D; Hong S; He J
    J Chem Phys; 2014 May; 140(17):174707. PubMed ID: 24811655
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intrinsic gap and exciton condensation in the nu{T}=1 bilayer system.
    Giudici P; Muraki K; Kumada N; Fujisawa T
    Phys Rev Lett; 2010 Feb; 104(5):056802. PubMed ID: 20366783
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microscopic Coulomb interaction in transition-metal dichalcogenides.
    Neuhaus J; Liebscher SC; Meckbach L; Stroucken T; Koch SW
    J Phys Condens Matter; 2020 Oct; 33(3):. PubMed ID: 32906108
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anomalous Dynamics of Defect-Assisted Phonon Recycling in Few-Layer Mo
    Wang X; Niu G; Jiang J; Sui L; Zeng X; Liu X; Zhang Y; Wu G; Yuan K; Yang X
    J Phys Chem Lett; 2022 Nov; 13(44):10395-10403. PubMed ID: 36318176
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Model Prediction of Self-Rotating Excitons in Two-Dimensional Transition-Metal Dichalcogenides.
    Trushin M; Goerbig MO; Belzig W
    Phys Rev Lett; 2018 May; 120(18):187401. PubMed ID: 29775359
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Faraday-like Screening by Two-Dimensional Nanomaterials: A Scale-Dependent Tunable Effect.
    Ambrosetti A; Silvestrelli PL
    J Phys Chem Lett; 2019 May; 10(9):2044-2050. PubMed ID: 30964300
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phillips-Inspired Machine Learning for Band Gap and Exciton Binding Energy Prediction.
    Liang J; Zhu X
    J Phys Chem Lett; 2019 Sep; 10(18):5640-5646. PubMed ID: 31479611
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Correction: Thermal dissociation of inter-layer excitons in MoS
    Mouri S; Zhang W; Kozawa D; Miyauchi Y; Eda G; Matsuda K
    Nanoscale; 2017 Jun; 9(22):7686. PubMed ID: 28540375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Perpendicular-electric-field dependence of exciton binding energy studied by continuous-wave photoluminescence.
    Luo K; Zheng H; Xu S; Yang X; Zhang P; Zhang W; Li C
    Phys Rev B Condens Matter; 1996 Jun; 53(24):16453-16457. PubMed ID: 9983486
    [No Abstract]   [Full Text] [Related]  

  • 54. Opportunities and challenges of interlayer exciton control and manipulation.
    Mak KF; Shan J
    Nat Nanotechnol; 2018 Nov; 13(11):974-976. PubMed ID: 30397289
    [No Abstract]   [Full Text] [Related]  

  • 55. Generating intense electric fields in 2D materials by dual ionic gating.
    Weintrub BI; Hsieh YL; Kovalchuk S; Kirchhof JN; Greben K; Bolotin KI
    Nat Commun; 2022 Nov; 13(1):6601. PubMed ID: 36329011
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optical control of polarization in ferroelectric heterostructures.
    Li T; Lipatov A; Lu H; Lee H; Lee JW; Torun E; Wirtz L; Eom CB; Íñiguez J; Sinitskii A; Gruverman A
    Nat Commun; 2018 Aug; 9(1):3344. PubMed ID: 30131577
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An anomalous interlayer exciton in MoS
    Azhikodan D; Nautiyal T; Shallcross S; Sharma S
    Sci Rep; 2016 Nov; 6():37075. PubMed ID: 27841337
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of interlayer interactions on exciton luminescence in atomic-layered MoS2 crystals.
    Kim JG; Yun WS; Jo S; Lee J; Cho CH
    Sci Rep; 2016 Jul; 6():29813. PubMed ID: 27416744
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interlayer excitons in bilayer MoS
    Niehues I; Blob A; Stiehm T; Michaelis de Vasconcellos S; Bratschitsch R
    Nanoscale; 2019 Jul; 11(27):12788-12792. PubMed ID: 31245801
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.