These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 27841368)
1. Tuning carrier lifetime in InGaN/GaN LEDs via strain compensation for high-speed visible light communication. Du C; Huang X; Jiang C; Pu X; Zhao Z; Jing L; Hu W; Wang ZL Sci Rep; 2016 Nov; 6():37132. PubMed ID: 27841368 [TBL] [Abstract][Full Text] [Related]
2. White-Light GaN-μLEDs Employing Green/Red Perovskite Quantum Dots as Color Converters for Visible Light Communication. Liu X; Tao L; Mei S; Cui Z; Shen D; Sheng Z; Yu J; Ye P; Zhi T; Tao T; Wang L; Guo R; Tian P Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214955 [TBL] [Abstract][Full Text] [Related]
3. High Modulation Bandwidth of Semipolar (11-22) InGaN/GaN LEDs with Long Wavelength Emission. Haggar JI; Cai Y; Ghataora SS; Smith RM; Bai J; Wang T ACS Appl Electron Mater; 2020 Aug; 2(8):2363-2368. PubMed ID: 32904914 [TBL] [Abstract][Full Text] [Related]
4. Improving modulation bandwidth of c-plane GaN-based light-emitting diodes by an ultra-thin quantum wells design. Rajabi K; Wang J; Jin J; Xing Y; Wang L; Han Y; Sun C; Hao Z; Luo Y; Qian K; Chen CJ; Wu MC Opt Express; 2018 Sep; 26(19):24985-24991. PubMed ID: 30469606 [TBL] [Abstract][Full Text] [Related]
5. Performance improvement of GaN-based LEDs with step stage InGaN/GaN strain relief layers in GaN-based blue LEDs. Jia C; Yu T; Lu H; Zhong C; Sun Y; Tong Y; Zhang G Opt Express; 2013 Apr; 21(7):8444-9. PubMed ID: 23571934 [TBL] [Abstract][Full Text] [Related]
6. Active tracking system for visible light communication using a GaN-based micro-LED and NRZ-OOK. Lu Z; Tian P; Chen H; Baranowski I; Fu H; Huang X; Montes J; Fan Y; Wang H; Liu X; Liu R; Zhao Y Opt Express; 2017 Jul; 25(15):17971-17981. PubMed ID: 28789285 [TBL] [Abstract][Full Text] [Related]
7. 2.805 Gbit/s high-bandwidth phosphor white light visible light communication utilizing an InGaN/GaN semipolar blue micro-LED. Chang YH; Huang YM; Liou FJ; Chow CW; Liu Y; Kuo HC; Yeh CH; Gunawan WH; Hung TY; Jian YH Opt Express; 2022 May; 30(10):16938-16946. PubMed ID: 36221527 [TBL] [Abstract][Full Text] [Related]
8. High-Bandwidth White-Light System Combining a Micro-LED with Perovskite Quantum Dots for Visible Light Communication. Mei S; Liu X; Zhang W; Liu R; Zheng L; Guo R; Tian P ACS Appl Mater Interfaces; 2018 Feb; 10(6):5641-5648. PubMed ID: 29345894 [TBL] [Abstract][Full Text] [Related]
9. Gradual Carrier Filling Effect in "Green" InGaN/GaN Quantum Dots: Femtosecond Carrier Kinetics with Sequential Two-Photon Absorption. Udai A; Aiello A; Aggarwal T; Saha D; Bhattacharya P ACS Appl Mater Interfaces; 2021 Sep; 13(37):45033-45039. PubMed ID: 34495630 [TBL] [Abstract][Full Text] [Related]
11. Investigations on the high performance of InGaN red micro-LEDs with single quantum well for visible light communication applications. Hsiao FH; Lee TY; Miao WC; Pai YH; Iida D; Lin CL; Chen FC; Chow CW; Lin CC; Horng RH; He JH; Ohkawa K; Hong YH; Chang CY; Kuo HC Discov Nano; 2023 Jul; 18(1):95. PubMed ID: 37498403 [TBL] [Abstract][Full Text] [Related]
13. On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities. Cai W; Yang Y; Gao X; Yuan J; Yuan W; Zhu H; Wang Y Opt Express; 2016 Mar; 24(6):6004-10. PubMed ID: 27136794 [TBL] [Abstract][Full Text] [Related]
14. Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes. Zhao P; Zhao H Opt Express; 2012 Sep; 20 Suppl 5():A765-76. PubMed ID: 23037543 [TBL] [Abstract][Full Text] [Related]
15. Investigation of low-temperature electroluminescence of InGaN/GaN based nanorod light emitting arrays. Huang YY; Chen LY; Chang CH; Sun YH; Cheng YW; Ke MY; Lu YH; Kuo HC; Huang J Nanotechnology; 2011 Jan; 22(4):045202. PubMed ID: 21157011 [TBL] [Abstract][Full Text] [Related]
16. Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars. Du C; Jiang C; Zuo P; Huang X; Pu X; Zhao Z; Zhou Y; Li L; Chen H; Hu W; Wang ZL Small; 2015 Dec; 11(45):6071-7. PubMed ID: 26450795 [TBL] [Abstract][Full Text] [Related]
17. 3.2 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-photodetector. Ho KT; Chen R; Liu G; Shen C; Holguin-Lerma J; Al-Saggaf AA; Ng TK; Alouini MS; He JH; Ooi BS Opt Express; 2018 Feb; 26(3):3037-3045. PubMed ID: 29401836 [TBL] [Abstract][Full Text] [Related]
18. GaN-based mid-power flip-chip light-emitting diode with high -3 dB bandwidth for visible light communications. Zhou Z; Yan B; Ma X; Teng D; Liu L; Wang G Appl Opt; 2018 Apr; 57(11):2773-2779. PubMed ID: 29714278 [TBL] [Abstract][Full Text] [Related]
19. Enhanced performance of InGaN/GaN multiple-quantum-well light-emitting diodes grown on nanoporous GaN layers. Lee KJ; Kim SJ; Kim JJ; Hwang K; Kim ST; Park SJ Opt Express; 2014 Jun; 22 Suppl 4():A1164-73. PubMed ID: 24978079 [TBL] [Abstract][Full Text] [Related]
20. Strain engineering for the solution of efficiency droop in InGaN/GaN light-emitting diodes. Son JH; Lee JL Opt Express; 2010 Mar; 18(6):5466-71. PubMed ID: 20389563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]