These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 27841415)
1. High-performance printable hybrid perovskite solar cells with an easily accessible n-doped fullerene as a cathode interfacial layer. Chang CY; Tsai BC; Hsiao YC; Huang YC; Tsao CS Phys Chem Chem Phys; 2016 Nov; 18(46):31836-31844. PubMed ID: 27841415 [TBL] [Abstract][Full Text] [Related]
2. Highly stable and efficient cathode-buffer-layer-free inverted perovskite solar cells. Kim YR; Oh CM; Yoon CJ; Kim JH; Park K; Lee K; Hwang IW; Kim H Nanoscale; 2021 Mar; 13(11):5652-5659. PubMed ID: 33710224 [TBL] [Abstract][Full Text] [Related]
3. Imidazole-Functionalized Fullerene as a Vertically Phase-Separated Cathode Interfacial Layer of Inverted Ternary Polymer Solar Cells. Li D; Liu Q; Zhen J; Fang Z; Chen X; Yang S ACS Appl Mater Interfaces; 2017 Jan; 9(3):2720-2729. PubMed ID: 28045489 [TBL] [Abstract][Full Text] [Related]
4. High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer. Liu C; Wang K; Du P; Meng T; Yu X; Cheng SZ; Gong X ACS Appl Mater Interfaces; 2015 Jan; 7(2):1153-9. PubMed ID: 25513751 [TBL] [Abstract][Full Text] [Related]
5. Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer. Jia X; Zhang L; Luo Q; Lu H; Li X; Xie Z; Yang Y; Li YQ; Liu X; Ma CQ ACS Appl Mater Interfaces; 2016 Jul; 8(28):18410-7. PubMed ID: 27349330 [TBL] [Abstract][Full Text] [Related]
6. Structural design considerations of solution-processable graphenes as interfacial materials via a controllable synthesis method for the achievement of highly efficient, stable, and printable planar perovskite solar cells. Yeo JS; Seo YH; Jung CH; Na SI Nanoscale; 2019 Jan; 11(3):890-900. PubMed ID: 30406791 [TBL] [Abstract][Full Text] [Related]
7. A Simple Perylene Derivative as a Solution-Processable Cathode Interlayer for Perovskite Solar Cells with Enhanced Efficiency and Stability. Wang C; Liu P; Ju H; Yuan Q; Han D; Wang Y; Zhou DY; Feng L ACS Appl Mater Interfaces; 2018 May; 10(18):15933-15942. PubMed ID: 29683312 [TBL] [Abstract][Full Text] [Related]
8. Mixed Fullerene Electron Transport Layers with Fluorocarbon Chains Assembling on the Surface: A Moisture-Resistant Coverage for Perovskite Solar Cells. Xing Z; Li SH; Xie FF; Xu PY; Deng LL; Zhong X; Xie SY ACS Appl Mater Interfaces; 2020 Aug; 12(31):35081-35087. PubMed ID: 32667770 [TBL] [Abstract][Full Text] [Related]
9. Improved Performance and Stability of Inverted Planar Perovskite Solar Cells Using Fulleropyrrolidine Layers. Tian C; Castro E; Wang T; Betancourt-Solis G; Rodriguez G; Echegoyen L ACS Appl Mater Interfaces; 2016 Nov; 8(45):31426-31432. PubMed ID: 27766845 [TBL] [Abstract][Full Text] [Related]
10. Block Copolymer-Tuned Fullerene Electron Transport Layer Enhances the Efficiency of Perovskite Photovoltaics. Lin HK; Su YW; Chen HC; Huang YJ; Wei KH ACS Appl Mater Interfaces; 2016 Sep; 8(37):24603-11. PubMed ID: 27574718 [TBL] [Abstract][Full Text] [Related]
11. Naphthodiperylenetetraimide-Based Polymer as Electron-Transporting Material for Efficient Inverted Perovskite Solar Cells. Jiang K; Wu F; Zhu L; Yan H ACS Appl Mater Interfaces; 2018 Oct; 10(42):36549-36555. PubMed ID: 30256089 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the Performance of Perovskite Solar Cells with ZnO-Covered PC Chang TC; Liao CY; Lee CT; Lee HY Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512335 [TBL] [Abstract][Full Text] [Related]
13. Efficient and Stable Vacuum-Free-Processed Perovskite Solar Cells Enabled by a Robust Solution-Processed Hole Transport Layer. Chang CY; Tsai BC; Hsiao YC ChemSusChem; 2017 May; 10(9):1981-1988. PubMed ID: 28334500 [TBL] [Abstract][Full Text] [Related]
14. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells. Kim JH; Chueh CC; Williams ST; Jen AK Nanoscale; 2015 Nov; 7(41):17343-9. PubMed ID: 26426581 [TBL] [Abstract][Full Text] [Related]
15. Organic-Inorganic Hybrid Interfacial Layer for High-Performance Planar Perovskite Solar Cells. Yang H; Cong S; Lou Y; Han L; Zhao J; Sun Y; Zou G ACS Appl Mater Interfaces; 2017 Sep; 9(37):31746-31751. PubMed ID: 28840712 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Performance and Stability of Sn-Pb Perovskite Solar Cells with Oriented Phenyl-C Song T; Jang H; Seo J; Roe J; Song S; Kim JW; Yeop J; Lee Y; Lee H; Cho S; Kim JY ACS Nano; 2024 Jan; 18(4):2992-3001. PubMed ID: 38227810 [TBL] [Abstract][Full Text] [Related]
17. Improving efficiency by hybrid TiO(2) nanorods with 1,10-phenanthroline as a cathode buffer layer for inverted organic solar cells. Sun C; Wu Y; Zhang W; Jiang N; Jiu T; Fang J ACS Appl Mater Interfaces; 2014 Jan; 6(2):739-44. PubMed ID: 24386910 [TBL] [Abstract][Full Text] [Related]
18. Interfacial Engineering with Cross-Linkable Fullerene Derivatives for High-Performance Perovskite Solar Cells. Kang T; Tsai CM; Jiang YH; Gollavelli G; Mohanta N; Diau EW; Hsu CS ACS Appl Mater Interfaces; 2017 Nov; 9(44):38530-38536. PubMed ID: 29043782 [TBL] [Abstract][Full Text] [Related]
19. Fast Wetting of a Fullerene Capping Layer Improves the Efficiency and Scalability of Perovskite Solar Cells. Li B; Yu X; Jia L; Zhang M; Hu W; Shang Y; Li X; Ding L; Xu J; Yang S ACS Appl Mater Interfaces; 2020 Aug; 12(33):37265-37274. PubMed ID: 32689792 [TBL] [Abstract][Full Text] [Related]