These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 27841427)

  • 1. Allosteric pathways in tetrahydrofolate sensing riboswitch with dynamics correlation network.
    Zhang JM; Jiang C; Ye W; Luo R; Chen HF
    Mol Biosyst; 2016 Dec; 13(1):156-164. PubMed ID: 27841427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics Correlation Network for Allosteric Switching of PreQ1 Riboswitch.
    Wang W; Jiang C; Zhang J; Ye W; Luo R; Chen HF
    Sci Rep; 2016 Aug; 6():31005. PubMed ID: 27484311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch.
    Huang L; Ishibe-Murakami S; Patel DJ; Serganov A
    Proc Natl Acad Sci U S A; 2011 Sep; 108(36):14801-6. PubMed ID: 21873197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes.
    Zhang M; Liu G; Zhang Y; Chen T; Feng S; Cai R; Lu C
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into translation regulation by the THF-II riboswitch.
    Xu L; Xiao Y; Zhang J; Fang X
    Nucleic Acids Res; 2023 Jan; 51(2):952-965. PubMed ID: 36620887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based characterization and compound identification of the wild-type THF class-II riboswitch.
    Li C; Xu X; Geng Z; Zheng L; Song Q; Shen X; Wu J; Zhao J; Li H; He M; Tai X; Zhang L; Ma J; Dong Y; Ren A
    Nucleic Acids Res; 2024 Aug; 52(14):8454-8465. PubMed ID: 38769061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tying the knot in the tetrahydrofolate (THF) riboswitch: A molecular basis for gene regulation.
    Wilt HM; Yu P; Tan K; Wang YX; Stagno JR
    J Struct Biol; 2021 Mar; 213(1):107703. PubMed ID: 33571639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation on the allosteric analysis of the c-di-GMP class I riboswitch induced by ligand binding.
    Li C; Zhao X; Xie P; Hu J; Bi H
    J Mol Recognit; 2019 Jan; 32(1):e2756. PubMed ID: 30033590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical validation of a second class of tetrahydrofolate riboswitches in bacteria.
    Chen X; Mirihana Arachchilage G; Breaker RR
    RNA; 2019 Sep; 25(9):1091-1097. PubMed ID: 31186369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A disconnect between high-affinity binding and efficient regulation by antifolates and purines in the tetrahydrofolate riboswitch.
    Trausch JJ; Batey RT
    Chem Biol; 2014 Feb; 21(2):205-16. PubMed ID: 24388757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-dependent folding landscapes of adenine riboswitch aptamers.
    Lin JC; Hyeon C; Thirumalai D
    Phys Chem Chem Phys; 2014 Apr; 16(14):6376-82. PubMed ID: 24366448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding of SAM-II riboswitch explored by replica-exchange molecular dynamics simulation.
    Xue X; Yongjun W; Zhihong L
    J Theor Biol; 2015 Jan; 365():265-9. PubMed ID: 25451761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer.
    Trausch JJ; Ceres P; Reyes FE; Batey RT
    Structure; 2011 Oct; 19(10):1413-23. PubMed ID: 21906956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responsive self-assembly of tectoRNAs with loop-receptor interactions from the tetrahydrofolate (THF) riboswitch.
    Mitchell C; Polanco JA; DeWald L; Kress D; Jaeger L; Grabow WW
    Nucleic Acids Res; 2019 Jul; 47(12):6439-6451. PubMed ID: 31045210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR Structural Profiling of Transcriptional Intermediates Reveals Riboswitch Regulation by Metastable RNA Conformations.
    Helmling C; Wacker A; Wolfinger MT; Hofacker IL; Hengesbach M; Fürtig B; Schwalbe H
    J Am Chem Soc; 2017 Feb; 139(7):2647-2656. PubMed ID: 28134517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation.
    Gong Z; Zhao Y; Chen C; Xiao Y
    J Biomol Struct Dyn; 2011 Oct; 29(2):403-16. PubMed ID: 21875158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.
    Lin JC; Yoon J; Hyeon C; Thirumalai D
    Methods Enzymol; 2015; 553():235-58. PubMed ID: 25726468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulation mechanism of yitJ and metF riboswitches.
    Gong S; Wang Y; Zhang W
    J Chem Phys; 2015 Jul; 143(4):045103. PubMed ID: 26233166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Studies of the 3',3'-cGAMP Riboswitch Induced by Cognate and Noncognate Ligands Using Molecular Dynamics Simulation.
    Li C; Zhao X; Zhu X; Xie P; Chen G
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30423927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.