These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27841432)

  • 21. Fe/W Co-Doped BiVO
    Jiao Z; Zheng J; Feng C; Wang Z; Wang X; Lu G; Bi Y
    ChemSusChem; 2016 Oct; 9(19):2824-2831. PubMed ID: 27572550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interfacing BiVO
    Tan HL; Tahini HA; Wen X; Wong RJ; Tan X; Iwase A; Kudo A; Amal R; Smith SC; Ng YH
    Small; 2016 Oct; 12(38):5295-5302. PubMed ID: 27442495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning the Electronic Structure of Monoclinic Tungsten Oxide Nanoblocks by Indium Doping for Boosted Photoelectrochemical Performance.
    Kumar Mohanta M; Kanta Sahu T; Alam S; Qureshi M
    Chem Asian J; 2020 Nov; 15(22):3886-3896. PubMed ID: 33022881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: intrinsic behavior of a complex metal oxide.
    Rettie AJ; Lee HC; Marshall LG; Lin JF; Capan C; Lindemuth J; McCloy JS; Zhou J; Bard AJ; Mullins CB
    J Am Chem Soc; 2013 Jul; 135(30):11389-96. PubMed ID: 23869474
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation.
    Zhai C; Zhu M; Lu Y; Ren F; Wang C; Du Y; Yang P
    Phys Chem Chem Phys; 2014 Jul; 16(28):14800-7. PubMed ID: 24921437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sonophotocatalytic Dye Degradation Using rGO-BiVO
    Kumar M; Ansari MNM; Boukhris I; Al-Buriahi MS; Alrowaili ZA; Alfryyan N; Thomas P; Vaish R
    Glob Chall; 2022 Jun; 6(6):2100132. PubMed ID: 35712021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrostatic self-assembly of BiVO4-reduced graphene oxide nanocomposites for highly efficient visible light photocatalytic activities.
    Wang Y; Wang W; Mao H; Lu Y; Lu J; Huang J; Ye Z; Lu B
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12698-706. PubMed ID: 25010256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic doping effects of a ZnO:N/BiVO
    Kim D; Zhang Z; Yong K
    Nanoscale; 2018 Nov; 10(43):20256-20265. PubMed ID: 30362492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting.
    Kim TW; Choi KS
    Science; 2014 Feb; 343(6174):990-4. PubMed ID: 24526312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multifunctional reduced graphene oxide trigged chemiluminescence resonance energy transfer: Novel signal amplification strategy for photoelectrochemical immunoassay of squamous cell carcinoma antigen.
    Zhang Y; Sun G; Yang H; Yu J; Yan M; Song X
    Biosens Bioelectron; 2016 May; 79():55-62. PubMed ID: 26686924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced photoelectrochemical water splitting performance using morphology-controlled BiVO
    Zhao X; Chen Z
    Beilstein J Nanotechnol; 2017; 8():2640-2647. PubMed ID: 29259878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation energy and photoelectrochemical properties of BiVO4 after doping at Bi3+ or V5+ sites with higher valence metal ions.
    Luo W; Wang J; Zhao X; Zhao Z; Li Z; Zou Z
    Phys Chem Chem Phys; 2013 Jan; 15(3):1006-13. PubMed ID: 23223365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conversion of Biomass Derivatives to Electricity in Photo Fuel Cells using Undoped and Tungsten-doped Bismuth Vanadate Photoanodes.
    Zhang B; Shi J; Ding C; Chong R; Zhang B; Wang Z; Li A; Liang Z; Liao S; Li C
    ChemSusChem; 2015 Dec; 8(23):4049-55. PubMed ID: 26609790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Au nanoparticles embedded in BiVO
    Tang G; Li H; Cheng C
    Nanotechnology; 2019 Nov; 30(44):445402. PubMed ID: 31370056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation.
    Chen F; Yang Q; Zhong Y; An H; Zhao J; Xie T; Xu Q; Li X; Wang D; Zeng G
    Water Res; 2016 Sep; 101():555-563. PubMed ID: 27311108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution.
    Chae SY; Sudhagar P; Fujishima A; Hwang YJ; Joo OS
    Phys Chem Chem Phys; 2015 Mar; 17(12):7714-9. PubMed ID: 25711207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An investigation on the role of W doping in BiVO
    Zhao X; Hu J; Chen S; Chen Z
    Phys Chem Chem Phys; 2018 May; 20(19):13637-13645. PubMed ID: 29737988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic Multilayers for Efficient Solar Water Oxidation through Catalyst Loading and Surface-State Passivation of BiVO
    Bae S; Kim H; Jeon D; Ryu J
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7990-7999. PubMed ID: 30757899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of BiVO4@C Core-Shell Structure on Reduced Graphene Oxide with Enhanced Visible-Light Photocatalytic Activity.
    Sun Z; Li C; Zhu S; Cho M; Chen Z; Cho K; Liao Y; Yin C; Zhang D
    ChemSusChem; 2015 Aug; 8(16):2719-26. PubMed ID: 26212377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport.
    Seabold JA; Zhu K; Neale NR
    Phys Chem Chem Phys; 2014 Jan; 16(3):1121-31. PubMed ID: 24287501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.