BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 27841480)

  • 41. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
    Shigorina E; Kordilla J; Tartakovsky AM
    Phys Rev E; 2017 Sep; 96(3-1):033115. PubMed ID: 29346900
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Control over wettability of polyethylene glycol surfaces using capillary lithography.
    Suh KY; Jon S
    Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Apparent Contact Angle around the Periphery of a Liquid Drop on Roughened Surfaces.
    Huang X; Gates I
    Sci Rep; 2020 May; 10(1):8220. PubMed ID: 32427853
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Contact angle of a nanodrop on a nanorough solid surface.
    Berim GO; Ruckenstein E
    Nanoscale; 2015 Feb; 7(7):3088-99. PubMed ID: 25608234
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three-gradient regular solution model for simple liquids wetting complex surface topologies.
    Akerboom S; Kamperman M; Leermakers FA
    Beilstein J Nanotechnol; 2016; 7():1377-1396. PubMed ID: 27826512
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gibbsian Thermodynamics of Wenzel Wetting (Was Wenzel Wrong? Revisited).
    Shardt N; Elliott JAW
    Langmuir; 2020 Jan; 36(1):435-446. PubMed ID: 31869229
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition.
    Bormashenko E; Bormashenko Y; Stein T; Whyman G; Bormashenko E
    J Colloid Interface Sci; 2007 Jul; 311(1):212-6. PubMed ID: 17359990
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Theoretical consideration of wetting on a cylindrical pillar defect: pinning energy and penetrating phenomena.
    Mayama H; Nonomura Y
    Langmuir; 2011 Apr; 27(7):3550-60. PubMed ID: 21341783
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.
    Liu H; Ju Y; Wang N; Xi G; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Following the wetting of one-dimensional photoactive surfaces.
    Macias-Montero M; Borras A; Alvarez R; Gonzalez-Elipe AR
    Langmuir; 2012 Oct; 28(42):15047-55. PubMed ID: 22998211
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A stable intermediate wetting state after a water drop contacts the bottom of a microchannel or is placed on a single corner.
    Luo C; Xiang M; Heng X
    Langmuir; 2012 Jun; 28(25):9554-61. PubMed ID: 22639865
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contact angles of nanodrops on chemically rough surfaces.
    Berim GO; Ruckenstein E
    Langmuir; 2009 Aug; 25(16):9285-9. PubMed ID: 19419177
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces.
    Choi W; Tuteja A; Mabry JM; Cohen RE; McKinley GH
    J Colloid Interface Sci; 2009 Nov; 339(1):208-16. PubMed ID: 19683717
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two-fluid wetting behavior of a hydrophobic silicon nanowire array.
    Kim Y; Chung Y; Tian Y; Carraro C; Maboudian R
    Langmuir; 2014 Nov; 30(44):13330-7. PubMed ID: 25356959
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wetting behavior and drainage of water droplets on microgrooved brass surfaces.
    Rahman MA; Jacobi AM
    Langmuir; 2012 Sep; 28(37):13441-51. PubMed ID: 22909187
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of macroscale wetting equations on a microrough surface.
    Wang Y; Wang X; Du Z; Zhang C; Tian M; Mi J
    Langmuir; 2015 Mar; 31(8):2342-50. PubMed ID: 25654557
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wetting transitions in adhesive surfaces of polystyrene: The petal effect.
    Jonguitud-Flores S; Yáñez-Soto B; Pérez E; Sánchez-Balderas G
    J Colloid Interface Sci; 2024 Jun; 674():178-185. PubMed ID: 38925063
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography.
    Jeong HE; Kwak MK; Park CI; Suh KY
    J Colloid Interface Sci; 2009 Nov; 339(1):202-7. PubMed ID: 19656522
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wettability of Complex Fluids and Surfactant Capped Nanoparticle-Induced Quasi-Universal Wetting Behavior.
    Harikrishnan AR; Dhar P; Agnihotri PK; Gedupudi S; Das SK
    J Phys Chem B; 2017 Jun; 121(24):6081-6095. PubMed ID: 28585819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.